File size: 7,728 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
from torch import nn


class GBlock(nn.Module):
    def __init__(self, in_channels, cond_channels, downsample_factor):
        super().__init__()

        self.in_channels = in_channels
        self.cond_channels = cond_channels
        self.downsample_factor = downsample_factor

        self.start = nn.Sequential(
            nn.AvgPool1d(downsample_factor, stride=downsample_factor),
            nn.ReLU(),
            nn.Conv1d(in_channels, in_channels * 2, kernel_size=3, padding=1),
        )
        self.lc_conv1d = nn.Conv1d(cond_channels, in_channels * 2, kernel_size=1)
        self.end = nn.Sequential(
            nn.ReLU(), nn.Conv1d(in_channels * 2, in_channels * 2, kernel_size=3, dilation=2, padding=2)
        )
        self.residual = nn.Sequential(
            nn.Conv1d(in_channels, in_channels * 2, kernel_size=1),
            nn.AvgPool1d(downsample_factor, stride=downsample_factor),
        )

    def forward(self, inputs, conditions):
        outputs = self.start(inputs) + self.lc_conv1d(conditions)
        outputs = self.end(outputs)
        residual_outputs = self.residual(inputs)
        outputs = outputs + residual_outputs

        return outputs


class DBlock(nn.Module):
    def __init__(self, in_channels, out_channels, downsample_factor):
        super().__init__()

        self.in_channels = in_channels
        self.downsample_factor = downsample_factor
        self.out_channels = out_channels

        self.donwsample_layer = nn.AvgPool1d(downsample_factor, stride=downsample_factor)
        self.layers = nn.Sequential(
            nn.ReLU(),
            nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv1d(out_channels, out_channels, kernel_size=3, dilation=2, padding=2),
        )
        self.residual = nn.Sequential(
            nn.Conv1d(in_channels, out_channels, kernel_size=1),
        )

    def forward(self, inputs):
        if self.downsample_factor > 1:
            outputs = self.layers(self.donwsample_layer(inputs)) + self.donwsample_layer(self.residual(inputs))
        else:
            outputs = self.layers(inputs) + self.residual(inputs)
        return outputs


class ConditionalDiscriminator(nn.Module):
    def __init__(self, in_channels, cond_channels, downsample_factors=(2, 2, 2), out_channels=(128, 256)):
        super().__init__()

        assert len(downsample_factors) == len(out_channels) + 1

        self.in_channels = in_channels
        self.cond_channels = cond_channels
        self.downsample_factors = downsample_factors
        self.out_channels = out_channels

        self.pre_cond_layers = nn.ModuleList()
        self.post_cond_layers = nn.ModuleList()

        # layers before condition features
        self.pre_cond_layers += [DBlock(in_channels, 64, 1)]
        in_channels = 64
        for i, channel in enumerate(out_channels):
            self.pre_cond_layers.append(DBlock(in_channels, channel, downsample_factors[i]))
            in_channels = channel

        # condition block
        self.cond_block = GBlock(in_channels, cond_channels, downsample_factors[-1])

        # layers after condition block
        self.post_cond_layers += [
            DBlock(in_channels * 2, in_channels * 2, 1),
            DBlock(in_channels * 2, in_channels * 2, 1),
            nn.AdaptiveAvgPool1d(1),
            nn.Conv1d(in_channels * 2, 1, kernel_size=1),
        ]

    def forward(self, inputs, conditions):
        batch_size = inputs.size()[0]
        outputs = inputs.view(batch_size, self.in_channels, -1)
        for layer in self.pre_cond_layers:
            outputs = layer(outputs)
        outputs = self.cond_block(outputs, conditions)
        for layer in self.post_cond_layers:
            outputs = layer(outputs)

        return outputs


class UnconditionalDiscriminator(nn.Module):
    def __init__(self, in_channels, base_channels=64, downsample_factors=(8, 4), out_channels=(128, 256)):
        super().__init__()

        self.downsample_factors = downsample_factors
        self.in_channels = in_channels
        self.downsample_factors = downsample_factors
        self.out_channels = out_channels

        self.layers = nn.ModuleList()
        self.layers += [DBlock(self.in_channels, base_channels, 1)]
        in_channels = base_channels
        for i, factor in enumerate(downsample_factors):
            self.layers.append(DBlock(in_channels, out_channels[i], factor))
            in_channels *= 2
        self.layers += [
            DBlock(in_channels, in_channels, 1),
            DBlock(in_channels, in_channels, 1),
            nn.AdaptiveAvgPool1d(1),
            nn.Conv1d(in_channels, 1, kernel_size=1),
        ]

    def forward(self, inputs):
        batch_size = inputs.size()[0]
        outputs = inputs.view(batch_size, self.in_channels, -1)
        for layer in self.layers:
            outputs = layer(outputs)
        return outputs


class RandomWindowDiscriminator(nn.Module):
    """Random Window Discriminator as described in
    http://arxiv.org/abs/1909.11646"""

    def __init__(
        self,
        cond_channels,
        hop_length,
        uncond_disc_donwsample_factors=(8, 4),
        cond_disc_downsample_factors=((8, 4, 2, 2, 2), (8, 4, 2, 2), (8, 4, 2), (8, 4), (4, 2, 2)),
        cond_disc_out_channels=((128, 128, 256, 256), (128, 256, 256), (128, 256), (256,), (128, 256)),
        window_sizes=(512, 1024, 2048, 4096, 8192),
    ):
        super().__init__()
        self.cond_channels = cond_channels
        self.window_sizes = window_sizes
        self.hop_length = hop_length
        self.base_window_size = self.hop_length * 2
        self.ks = [ws // self.base_window_size for ws in window_sizes]

        # check arguments
        assert len(cond_disc_downsample_factors) == len(cond_disc_out_channels) == len(window_sizes)
        for ws in window_sizes:
            assert ws % hop_length == 0

        for idx, cf in enumerate(cond_disc_downsample_factors):
            assert np.prod(cf) == hop_length // self.ks[idx]

        # define layers
        self.unconditional_discriminators = nn.ModuleList([])
        for k in self.ks:
            layer = UnconditionalDiscriminator(
                in_channels=k, base_channels=64, downsample_factors=uncond_disc_donwsample_factors
            )
            self.unconditional_discriminators.append(layer)

        self.conditional_discriminators = nn.ModuleList([])
        for idx, k in enumerate(self.ks):
            layer = ConditionalDiscriminator(
                in_channels=k,
                cond_channels=cond_channels,
                downsample_factors=cond_disc_downsample_factors[idx],
                out_channels=cond_disc_out_channels[idx],
            )
            self.conditional_discriminators.append(layer)

    def forward(self, x, c):
        scores = []
        feats = []
        # unconditional pass
        for window_size, layer in zip(self.window_sizes, self.unconditional_discriminators):
            index = np.random.randint(x.shape[-1] - window_size)

            score = layer(x[:, :, index : index + window_size])
            scores.append(score)

        # conditional pass
        for window_size, layer in zip(self.window_sizes, self.conditional_discriminators):
            frame_size = window_size // self.hop_length
            lc_index = np.random.randint(c.shape[-1] - frame_size)
            sample_index = lc_index * self.hop_length
            x_sub = x[:, :, sample_index : (lc_index + frame_size) * self.hop_length]
            c_sub = c[:, :, lc_index : lc_index + frame_size]

            score = layer(x_sub, c_sub)
            scores.append(score)
        return scores, feats