Spaces:
Build error
Build error
File size: 7,960 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import sys
from collections import Counter
from pathlib import Path
from typing import Callable, Dict, List, Tuple, Union
import numpy as np
from TTS.tts.datasets.dataset import *
from TTS.tts.datasets.formatters import *
def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
"""Split a dataset into train and eval. Consider speaker distribution in multi-speaker training.
Args:
items (List[List]):
A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`.
eval_split_max_size (int):
Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).
eval_split_size (float):
If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.
If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).
"""
speakers = [item["speaker_name"] for item in items]
is_multi_speaker = len(set(speakers)) > 1
if eval_split_size > 1:
eval_split_size = int(eval_split_size)
else:
if eval_split_max_size:
eval_split_size = min(eval_split_max_size, int(len(items) * eval_split_size))
else:
eval_split_size = int(len(items) * eval_split_size)
assert (
eval_split_size > 0
), " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format(
1 / len(items)
)
np.random.seed(0)
np.random.shuffle(items)
if is_multi_speaker:
items_eval = []
speakers = [item["speaker_name"] for item in items]
speaker_counter = Counter(speakers)
while len(items_eval) < eval_split_size:
item_idx = np.random.randint(0, len(items))
speaker_to_be_removed = items[item_idx]["speaker_name"]
if speaker_counter[speaker_to_be_removed] > 1:
items_eval.append(items[item_idx])
speaker_counter[speaker_to_be_removed] -= 1
del items[item_idx]
return items_eval, items
return items[:eval_split_size], items[eval_split_size:]
def add_extra_keys(metadata, language, dataset_name):
for item in metadata:
# add language name
item["language"] = language
# add unique audio name
relfilepath = os.path.splitext(os.path.relpath(item["audio_file"], item["root_path"]))[0]
audio_unique_name = f"{dataset_name}#{relfilepath}"
item["audio_unique_name"] = audio_unique_name
return metadata
def load_tts_samples(
datasets: Union[List[Dict], Dict],
eval_split=True,
formatter: Callable = None,
eval_split_max_size=None,
eval_split_size=0.01,
) -> Tuple[List[List], List[List]]:
"""Parse the dataset from the datasets config, load the samples as a List and load the attention alignments if provided.
If `formatter` is not None, apply the formatter to the samples else pick the formatter from the available ones based
on the dataset name.
Args:
datasets (List[Dict], Dict): A list of datasets or a single dataset dictionary. If multiple datasets are
in the list, they are all merged.
eval_split (bool, optional): If true, create a evaluation split. If an eval split provided explicitly, generate
an eval split automatically. Defaults to True.
formatter (Callable, optional): The preprocessing function to be applied to create the list of samples. It
must take the root_path and the meta_file name and return a list of samples in the format of
`[[text, audio_path, speaker_id], ...]]`. See the available formatters in `TTS.tts.dataset.formatter` as
example. Defaults to None.
eval_split_max_size (int):
Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).
eval_split_size (float):
If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.
If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).
Returns:
Tuple[List[List], List[List]: training and evaluation splits of the dataset.
"""
meta_data_train_all = []
meta_data_eval_all = [] if eval_split else None
if not isinstance(datasets, list):
datasets = [datasets]
for dataset in datasets:
formatter_name = dataset["formatter"]
dataset_name = dataset["dataset_name"]
root_path = dataset["path"]
meta_file_train = dataset["meta_file_train"]
meta_file_val = dataset["meta_file_val"]
ignored_speakers = dataset["ignored_speakers"]
language = dataset["language"]
# setup the right data processor
if formatter is None:
formatter = _get_formatter_by_name(formatter_name)
# load train set
meta_data_train = formatter(root_path, meta_file_train, ignored_speakers=ignored_speakers)
assert len(meta_data_train) > 0, f" [!] No training samples found in {root_path}/{meta_file_train}"
meta_data_train = add_extra_keys(meta_data_train, language, dataset_name)
print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}")
# load evaluation split if set
if eval_split:
if meta_file_val:
meta_data_eval = formatter(root_path, meta_file_val, ignored_speakers=ignored_speakers)
meta_data_eval = add_extra_keys(meta_data_eval, language, dataset_name)
else:
eval_size_per_dataset = eval_split_max_size // len(datasets) if eval_split_max_size else None
meta_data_eval, meta_data_train = split_dataset(meta_data_train, eval_size_per_dataset, eval_split_size)
meta_data_eval_all += meta_data_eval
meta_data_train_all += meta_data_train
# load attention masks for the duration predictor training
if dataset.meta_file_attn_mask:
meta_data = dict(load_attention_mask_meta_data(dataset["meta_file_attn_mask"]))
for idx, ins in enumerate(meta_data_train_all):
attn_file = meta_data[ins["audio_file"]].strip()
meta_data_train_all[idx].update({"alignment_file": attn_file})
if meta_data_eval_all:
for idx, ins in enumerate(meta_data_eval_all):
attn_file = meta_data[ins["audio_file"]].strip()
meta_data_eval_all[idx].update({"alignment_file": attn_file})
# set none for the next iter
formatter = None
return meta_data_train_all, meta_data_eval_all
def load_attention_mask_meta_data(metafile_path):
"""Load meta data file created by compute_attention_masks.py"""
with open(metafile_path, "r", encoding="utf-8") as f:
lines = f.readlines()
meta_data = []
for line in lines:
wav_file, attn_file = line.split("|")
meta_data.append([wav_file, attn_file])
return meta_data
def _get_formatter_by_name(name):
"""Returns the respective preprocessing function."""
thismodule = sys.modules[__name__]
return getattr(thismodule, name.lower())
def find_unique_chars(data_samples, verbose=True):
texts = "".join(item[0] for item in data_samples)
chars = set(texts)
lower_chars = filter(lambda c: c.islower(), chars)
chars_force_lower = [c.lower() for c in chars]
chars_force_lower = set(chars_force_lower)
if verbose:
print(f" > Number of unique characters: {len(chars)}")
print(f" > Unique characters: {''.join(sorted(chars))}")
print(f" > Unique lower characters: {''.join(sorted(lower_chars))}")
print(f" > Unique all forced to lower characters: {''.join(sorted(chars_force_lower))}")
return chars_force_lower
|