File size: 18,785 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# coding: utf-8
# adapted from https://github.com/r9y9/tacotron_pytorch

import torch
from torch import nn

from .attentions import init_attn
from .common_layers import Prenet


class BatchNormConv1d(nn.Module):
    r"""A wrapper for Conv1d with BatchNorm. It sets the activation
    function between Conv and BatchNorm layers. BatchNorm layer
    is initialized with the TF default values for momentum and eps.

    Args:
        in_channels: size of each input sample
        out_channels: size of each output samples
        kernel_size: kernel size of conv filters
        stride: stride of conv filters
        padding: padding of conv filters
        activation: activation function set b/w Conv1d and BatchNorm

    Shapes:
        - input: (B, D)
        - output: (B, D)
    """

    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activation=None):
        super().__init__()
        self.padding = padding
        self.padder = nn.ConstantPad1d(padding, 0)
        self.conv1d = nn.Conv1d(
            in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0, bias=False
        )
        # Following tensorflow's default parameters
        self.bn = nn.BatchNorm1d(out_channels, momentum=0.99, eps=1e-3)
        self.activation = activation
        # self.init_layers()

    def init_layers(self):
        if isinstance(self.activation, torch.nn.ReLU):
            w_gain = "relu"
        elif isinstance(self.activation, torch.nn.Tanh):
            w_gain = "tanh"
        elif self.activation is None:
            w_gain = "linear"
        else:
            raise RuntimeError("Unknown activation function")
        torch.nn.init.xavier_uniform_(self.conv1d.weight, gain=torch.nn.init.calculate_gain(w_gain))

    def forward(self, x):
        x = self.padder(x)
        x = self.conv1d(x)
        x = self.bn(x)
        if self.activation is not None:
            x = self.activation(x)
        return x


class Highway(nn.Module):
    r"""Highway layers as explained in https://arxiv.org/abs/1505.00387

    Args:
        in_features (int): size of each input sample
        out_feature (int): size of each output sample

    Shapes:
        - input: (B, *, H_in)
        - output: (B, *, H_out)
    """

    # TODO: Try GLU layer
    def __init__(self, in_features, out_feature):
        super().__init__()
        self.H = nn.Linear(in_features, out_feature)
        self.H.bias.data.zero_()
        self.T = nn.Linear(in_features, out_feature)
        self.T.bias.data.fill_(-1)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        # self.init_layers()

    def init_layers(self):
        torch.nn.init.xavier_uniform_(self.H.weight, gain=torch.nn.init.calculate_gain("relu"))
        torch.nn.init.xavier_uniform_(self.T.weight, gain=torch.nn.init.calculate_gain("sigmoid"))

    def forward(self, inputs):
        H = self.relu(self.H(inputs))
        T = self.sigmoid(self.T(inputs))
        return H * T + inputs * (1.0 - T)


class CBHG(nn.Module):
    """CBHG module: a recurrent neural network composed of:
    - 1-d convolution banks
    - Highway networks + residual connections
    - Bidirectional gated recurrent units

    Args:
        in_features (int): sample size
        K (int): max filter size in conv bank
        projections (list): conv channel sizes for conv projections
        num_highways (int): number of highways layers

    Shapes:
        - input: (B, C, T_in)
        - output: (B, T_in, C*2)
    """

    # pylint: disable=dangerous-default-value
    def __init__(
        self,
        in_features,
        K=16,
        conv_bank_features=128,
        conv_projections=[128, 128],
        highway_features=128,
        gru_features=128,
        num_highways=4,
    ):
        super().__init__()
        self.in_features = in_features
        self.conv_bank_features = conv_bank_features
        self.highway_features = highway_features
        self.gru_features = gru_features
        self.conv_projections = conv_projections
        self.relu = nn.ReLU()
        # list of conv1d bank with filter size k=1...K
        # TODO: try dilational layers instead
        self.conv1d_banks = nn.ModuleList(
            [
                BatchNormConv1d(
                    in_features,
                    conv_bank_features,
                    kernel_size=k,
                    stride=1,
                    padding=[(k - 1) // 2, k // 2],
                    activation=self.relu,
                )
                for k in range(1, K + 1)
            ]
        )
        # max pooling of conv bank, with padding
        # TODO: try average pooling OR larger kernel size
        out_features = [K * conv_bank_features] + conv_projections[:-1]
        activations = [self.relu] * (len(conv_projections) - 1)
        activations += [None]
        # setup conv1d projection layers
        layer_set = []
        for in_size, out_size, ac in zip(out_features, conv_projections, activations):
            layer = BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1, padding=[1, 1], activation=ac)
            layer_set.append(layer)
        self.conv1d_projections = nn.ModuleList(layer_set)
        # setup Highway layers
        if self.highway_features != conv_projections[-1]:
            self.pre_highway = nn.Linear(conv_projections[-1], highway_features, bias=False)
        self.highways = nn.ModuleList([Highway(highway_features, highway_features) for _ in range(num_highways)])
        # bi-directional GPU layer
        self.gru = nn.GRU(gru_features, gru_features, 1, batch_first=True, bidirectional=True)

    def forward(self, inputs):
        # (B, in_features, T_in)
        x = inputs
        # (B, hid_features*K, T_in)
        # Concat conv1d bank outputs
        outs = []
        for conv1d in self.conv1d_banks:
            out = conv1d(x)
            outs.append(out)
        x = torch.cat(outs, dim=1)
        assert x.size(1) == self.conv_bank_features * len(self.conv1d_banks)
        for conv1d in self.conv1d_projections:
            x = conv1d(x)
        x += inputs
        x = x.transpose(1, 2)
        if self.highway_features != self.conv_projections[-1]:
            x = self.pre_highway(x)
        # Residual connection
        # TODO: try residual scaling as in Deep Voice 3
        # TODO: try plain residual layers
        for highway in self.highways:
            x = highway(x)
        # (B, T_in, hid_features*2)
        # TODO: replace GRU with convolution as in Deep Voice 3
        self.gru.flatten_parameters()
        outputs, _ = self.gru(x)
        return outputs


class EncoderCBHG(nn.Module):
    r"""CBHG module with Encoder specific arguments"""

    def __init__(self):
        super().__init__()
        self.cbhg = CBHG(
            128,
            K=16,
            conv_bank_features=128,
            conv_projections=[128, 128],
            highway_features=128,
            gru_features=128,
            num_highways=4,
        )

    def forward(self, x):
        return self.cbhg(x)


class Encoder(nn.Module):
    r"""Stack Prenet and CBHG module for encoder
    Args:
        inputs (FloatTensor): embedding features

    Shapes:
        - inputs: (B, T, D_in)
        - outputs: (B, T, 128 * 2)
    """

    def __init__(self, in_features):
        super().__init__()
        self.prenet = Prenet(in_features, out_features=[256, 128])
        self.cbhg = EncoderCBHG()

    def forward(self, inputs):
        # B x T x prenet_dim
        outputs = self.prenet(inputs)
        outputs = self.cbhg(outputs.transpose(1, 2))
        return outputs


class PostCBHG(nn.Module):
    def __init__(self, mel_dim):
        super().__init__()
        self.cbhg = CBHG(
            mel_dim,
            K=8,
            conv_bank_features=128,
            conv_projections=[256, mel_dim],
            highway_features=128,
            gru_features=128,
            num_highways=4,
        )

    def forward(self, x):
        return self.cbhg(x)


class Decoder(nn.Module):
    """Tacotron decoder.

    Args:
        in_channels (int): number of input channels.
        frame_channels (int): number of feature frame channels.
        r (int): number of outputs per time step (reduction rate).
        memory_size (int): size of the past window. if <= 0 memory_size = r
        attn_type (string): type of attention used in decoder.
        attn_windowing (bool): if true, define an attention window centered to maximum
            attention response. It provides more robust attention alignment especially
            at interence time.
        attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'.
        prenet_type (string): 'original' or 'bn'.
        prenet_dropout (float): prenet dropout rate.
        forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736
        trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736
        forward_attn_mask (bool): if true, mask attention values smaller than a threshold.
        location_attn (bool): if true, use location sensitive attention.
        attn_K (int): number of attention heads for GravesAttention.
        separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow.
        d_vector_dim (int): size of speaker embedding vector, for multi-speaker training.
        max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 500.
    """

    # Pylint gets confused by PyTorch conventions here
    # pylint: disable=attribute-defined-outside-init

    def __init__(
        self,
        in_channels,
        frame_channels,
        r,
        memory_size,
        attn_type,
        attn_windowing,
        attn_norm,
        prenet_type,
        prenet_dropout,
        forward_attn,
        trans_agent,
        forward_attn_mask,
        location_attn,
        attn_K,
        separate_stopnet,
        max_decoder_steps,
    ):
        super().__init__()
        self.r_init = r
        self.r = r
        self.in_channels = in_channels
        self.max_decoder_steps = max_decoder_steps
        self.use_memory_queue = memory_size > 0
        self.memory_size = memory_size if memory_size > 0 else r
        self.frame_channels = frame_channels
        self.separate_stopnet = separate_stopnet
        self.query_dim = 256
        # memory -> |Prenet| -> processed_memory
        prenet_dim = frame_channels * self.memory_size if self.use_memory_queue else frame_channels
        self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[256, 128])
        # processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
        # attention_rnn generates queries for the attention mechanism
        self.attention_rnn = nn.GRUCell(in_channels + 128, self.query_dim)
        self.attention = init_attn(
            attn_type=attn_type,
            query_dim=self.query_dim,
            embedding_dim=in_channels,
            attention_dim=128,
            location_attention=location_attn,
            attention_location_n_filters=32,
            attention_location_kernel_size=31,
            windowing=attn_windowing,
            norm=attn_norm,
            forward_attn=forward_attn,
            trans_agent=trans_agent,
            forward_attn_mask=forward_attn_mask,
            attn_K=attn_K,
        )
        # (processed_memory | attention context) -> |Linear| -> decoder_RNN_input
        self.project_to_decoder_in = nn.Linear(256 + in_channels, 256)
        # decoder_RNN_input -> |RNN| -> RNN_state
        self.decoder_rnns = nn.ModuleList([nn.GRUCell(256, 256) for _ in range(2)])
        # RNN_state -> |Linear| -> mel_spec
        self.proj_to_mel = nn.Linear(256, frame_channels * self.r_init)
        # learn init values instead of zero init.
        self.stopnet = StopNet(256 + frame_channels * self.r_init)

    def set_r(self, new_r):
        self.r = new_r

    def _reshape_memory(self, memory):
        """
        Reshape the spectrograms for given 'r'
        """
        # Grouping multiple frames if necessary
        if memory.size(-1) == self.frame_channels:
            memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1)
        # Time first (T_decoder, B, frame_channels)
        memory = memory.transpose(0, 1)
        return memory

    def _init_states(self, inputs):
        """
        Initialization of decoder states
        """
        B = inputs.size(0)
        # go frame as zeros matrix
        if self.use_memory_queue:
            self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.memory_size)
        else:
            self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels)
        # decoder states
        self.attention_rnn_hidden = torch.zeros(1, device=inputs.device).repeat(B, 256)
        self.decoder_rnn_hiddens = [
            torch.zeros(1, device=inputs.device).repeat(B, 256) for idx in range(len(self.decoder_rnns))
        ]
        self.context_vec = inputs.data.new(B, self.in_channels).zero_()
        # cache attention inputs
        self.processed_inputs = self.attention.preprocess_inputs(inputs)

    def _parse_outputs(self, outputs, attentions, stop_tokens):
        # Back to batch first
        attentions = torch.stack(attentions).transpose(0, 1)
        stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
        outputs = torch.stack(outputs).transpose(0, 1).contiguous()
        outputs = outputs.view(outputs.size(0), -1, self.frame_channels)
        outputs = outputs.transpose(1, 2)
        return outputs, attentions, stop_tokens

    def decode(self, inputs, mask=None):
        # Prenet
        processed_memory = self.prenet(self.memory_input)
        # Attention RNN
        self.attention_rnn_hidden = self.attention_rnn(
            torch.cat((processed_memory, self.context_vec), -1), self.attention_rnn_hidden
        )
        self.context_vec = self.attention(self.attention_rnn_hidden, inputs, self.processed_inputs, mask)
        # Concat RNN output and attention context vector
        decoder_input = self.project_to_decoder_in(torch.cat((self.attention_rnn_hidden, self.context_vec), -1))

        # Pass through the decoder RNNs
        for idx, decoder_rnn in enumerate(self.decoder_rnns):
            self.decoder_rnn_hiddens[idx] = decoder_rnn(decoder_input, self.decoder_rnn_hiddens[idx])
            # Residual connection
            decoder_input = self.decoder_rnn_hiddens[idx] + decoder_input
        decoder_output = decoder_input

        # predict mel vectors from decoder vectors
        output = self.proj_to_mel(decoder_output)
        # output = torch.sigmoid(output)
        # predict stop token
        stopnet_input = torch.cat([decoder_output, output], -1)
        if self.separate_stopnet:
            stop_token = self.stopnet(stopnet_input.detach())
        else:
            stop_token = self.stopnet(stopnet_input)
        output = output[:, : self.r * self.frame_channels]
        return output, stop_token, self.attention.attention_weights

    def _update_memory_input(self, new_memory):
        if self.use_memory_queue:
            if self.memory_size > self.r:
                # memory queue size is larger than number of frames per decoder iter
                self.memory_input = torch.cat(
                    [new_memory, self.memory_input[:, : (self.memory_size - self.r) * self.frame_channels].clone()],
                    dim=-1,
                )
            else:
                # memory queue size smaller than number of frames per decoder iter
                self.memory_input = new_memory[:, : self.memory_size * self.frame_channels]
        else:
            # use only the last frame prediction
            # assert new_memory.shape[-1] == self.r * self.frame_channels
            self.memory_input = new_memory[:, self.frame_channels * (self.r - 1) :]

    def forward(self, inputs, memory, mask):
        """
        Args:
            inputs: Encoder outputs.
            memory: Decoder memory (autoregression. If None (at eval-time),
              decoder outputs are used as decoder inputs. If None, it uses the last
              output as the input.
            mask: Attention mask for sequence padding.

        Shapes:
            - inputs: (B, T, D_out_enc)
            - memory: (B, T_mel, D_mel)
        """
        # Run greedy decoding if memory is None
        memory = self._reshape_memory(memory)
        outputs = []
        attentions = []
        stop_tokens = []
        t = 0
        self._init_states(inputs)
        self.attention.init_states(inputs)
        while len(outputs) < memory.size(0):
            if t > 0:
                new_memory = memory[t - 1]
                self._update_memory_input(new_memory)

            output, stop_token, attention = self.decode(inputs, mask)
            outputs += [output]
            attentions += [attention]
            stop_tokens += [stop_token.squeeze(1)]
            t += 1
        return self._parse_outputs(outputs, attentions, stop_tokens)

    def inference(self, inputs):
        """
        Args:
            inputs: encoder outputs.
        Shapes:
            - inputs: batch x time x encoder_out_dim
        """
        outputs = []
        attentions = []
        stop_tokens = []
        t = 0
        self._init_states(inputs)
        self.attention.init_states(inputs)
        while True:
            if t > 0:
                new_memory = outputs[-1]
                self._update_memory_input(new_memory)
            output, stop_token, attention = self.decode(inputs, None)
            stop_token = torch.sigmoid(stop_token.data)
            outputs += [output]
            attentions += [attention]
            stop_tokens += [stop_token]
            t += 1
            if t > inputs.shape[1] / 4 and (stop_token > 0.6 or attention[:, -1].item() > 0.6):
                break
            if t > self.max_decoder_steps:
                print("   | > Decoder stopped with 'max_decoder_steps")
                break
        return self._parse_outputs(outputs, attentions, stop_tokens)


class StopNet(nn.Module):
    r"""Stopnet signalling decoder to stop inference.
    Args:
        in_features (int): feature dimension of input.
    """

    def __init__(self, in_features):
        super().__init__()
        self.dropout = nn.Dropout(0.1)
        self.linear = nn.Linear(in_features, 1)
        torch.nn.init.xavier_uniform_(self.linear.weight, gain=torch.nn.init.calculate_gain("linear"))

    def forward(self, inputs):
        outputs = self.dropout(inputs)
        outputs = self.linear(outputs)
        return outputs