File size: 12,506 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import http.client
import json
import os
import tempfile
import urllib.request
from typing import Tuple

import numpy as np
import requests
from scipy.io import wavfile

from TTS.utils.audio.numpy_transforms import save_wav


class Speaker(object):
    """Convert dict to object."""

    def __init__(self, d, is_voice=False):
        self.is_voice = is_voice
        for k, v in d.items():
            if isinstance(k, (list, tuple)):
                setattr(self, k, [Speaker(x) if isinstance(x, dict) else x for x in v])
            else:
                setattr(self, k, Speaker(v) if isinstance(v, dict) else v)

    def __repr__(self):
        return str(self.__dict__)


class CS_API:
    """🐸Coqui Studio API Wrapper.

    🐸Coqui Studio is the most advanced voice generation platform. You can generate new voices by voice cloning, voice
    interpolation, or our unique prompt to voice technology. It also provides a set of built-in voices with different
    characteristics. You can use these voices to generate new audio files or use them in your applications.
    You can use all the built-in and your own 🐸Coqui Studio speakers with this API with an API token.
    You can signup to 🐸Coqui Studio from https://app.coqui.ai/auth/signup and get an API token from
    https://app.coqui.ai/account. We can either enter the token as an environment variable as
    `export COQUI_STUDIO_TOKEN=<token>` or pass it as `CS_API(api_token=<toke>)`.
    Visit https://app.coqui.ai/api for more information.


    Args:
        api_token (str): 🐸Coqui Studio API token. If not provided, it will be read from the environment variable
            `COQUI_STUDIO_TOKEN`.
        model (str): 🐸Coqui Studio model. It can be either `V1`, `XTTS`. Default is `XTTS`.


    Example listing all available speakers:
        >>> from TTS.api import CS_API
        >>> tts = CS_API()
        >>> tts.speakers

    Example listing all emotions:
        >>> # emotions are only available for `V1` model
        >>> from TTS.api import CS_API
        >>> tts = CS_API(model="V1")
        >>> tts.emotions

    Example with a built-in 🐸 speaker:
        >>> from TTS.api import CS_API
        >>> tts = CS_API()
        >>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name)
        >>> filepath = tts.tts_to_file(text="Hello world!", speaker_name=tts.speakers[0].name, file_path="output.wav")

    Example with multi-language model:
        >>> from TTS.api import CS_API
        >>> tts = CS_API(model="XTTS")
        >>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name, language="en")
    """

    MODEL_ENDPOINTS = {
        "V1": {
            "list_speakers": "https://app.coqui.ai/api/v2/speakers",
            "synthesize": "https://app.coqui.ai/api/v2/samples",
            "list_voices": "https://app.coqui.ai/api/v2/voices",
        },
        "XTTS": {
            "list_speakers": "https://app.coqui.ai/api/v2/speakers",
            "synthesize": "https://app.coqui.ai/api/v2/samples/xtts/render/",
            "list_voices": "https://app.coqui.ai/api/v2/voices/xtts",
        },
    }

    SUPPORTED_LANGUAGES = ["en", "es", "de", "fr", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja"]

    def __init__(self, api_token=None, model="XTTS"):
        self.api_token = api_token
        self.model = model
        self.headers = None
        self._speakers = None
        self._check_token()

    @staticmethod
    def ping_api():
        URL = "https://coqui.gateway.scarf.sh/tts/api"
        _ = requests.get(URL)

    @property
    def speakers(self):
        if self._speakers is None:
            self._speakers = self.list_all_speakers()
        return self._speakers

    @property
    def emotions(self):
        """Return a list of available emotions.

        TODO: Get this from the API endpoint.
        """
        if self.model == "V1":
            return ["Neutral", "Happy", "Sad", "Angry", "Dull"]
        else:
            raise ValueError(f"❗ Emotions are not available for {self.model}.")

    def _check_token(self):
        if self.api_token is None:
            self.api_token = os.environ.get("COQUI_STUDIO_TOKEN")
            self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_token}"}
        if not self.api_token:
            raise ValueError(
                "No API token found for 🐸Coqui Studio voices - https://coqui.ai \n"
                "Visit 🔗https://app.coqui.ai/account to get one.\n"
                "Set it as an environment variable `export COQUI_STUDIO_TOKEN=<token>`\n"
                ""
            )

    def list_all_speakers(self):
        """Return both built-in Coqui Studio speakers and custom voices created by the user."""
        return self.list_speakers() + self.list_voices()

    def list_speakers(self):
        """List built-in Coqui Studio speakers."""
        self._check_token()
        conn = http.client.HTTPSConnection("app.coqui.ai")
        url = self.MODEL_ENDPOINTS[self.model]["list_speakers"]
        conn.request("GET", f"{url}?page=1&per_page=100", headers=self.headers)
        res = conn.getresponse()
        data = res.read()
        return [Speaker(s) for s in json.loads(data)["result"]]

    def list_voices(self):
        """List custom voices created by the user."""
        conn = http.client.HTTPSConnection("app.coqui.ai")
        url = self.MODEL_ENDPOINTS[self.model]["list_voices"]
        conn.request("GET", f"{url}?page=1&per_page=100", headers=self.headers)
        res = conn.getresponse()
        data = res.read()
        return [Speaker(s, True) for s in json.loads(data)["result"]]

    def list_speakers_as_tts_models(self):
        """List speakers in ModelManager format."""
        models = []
        for speaker in self.speakers:
            model = f"coqui_studio/multilingual/{speaker.name}/{self.model}"
            models.append(model)
        return models

    def name_to_speaker(self, name):
        for speaker in self.speakers:
            if speaker.name == name:
                return speaker
        raise ValueError(f"Speaker {name} not found in {self.speakers}")

    def id_to_speaker(self, speaker_id):
        for speaker in self.speakers:
            if speaker.id == speaker_id:
                return speaker
        raise ValueError(f"Speaker {speaker_id} not found.")

    @staticmethod
    def url_to_np(url):
        tmp_file, _ = urllib.request.urlretrieve(url)
        rate, data = wavfile.read(tmp_file)
        return data, rate

    @staticmethod
    def _create_payload(model, text, speaker, speed, emotion, language):
        payload = {}
        # if speaker.is_voice:
        payload["voice_id"] = speaker.id
        # else:
        payload["speaker_id"] = speaker.id

        if model == "V1":
            payload.update(
                {
                    "emotion": emotion,
                    "name": speaker.name,
                    "text": text,
                    "speed": speed,
                }
            )
        elif model == "XTTS":
            payload.update(
                {
                    "name": speaker.name,
                    "text": text,
                    "speed": speed,
                    "language": language,
                }
            )
        else:
            raise ValueError(f"❗ Unknown model {model}")
        return payload

    def _check_tts_args(self, text, speaker_name, speaker_id, emotion, speed, language):
        assert text is not None, "❗ text is required for V1 model."
        assert speaker_name is not None, "❗ speaker_name is required for V1 model."
        if self.model == "V1":
            if emotion is None:
                emotion = "Neutral"
            assert language is None, "❗ language is not supported for V1 model."
        elif self.model == "XTTS":
            assert emotion is None, f"❗ Emotions are not supported for XTTS model. Use V1 model."
            assert language is not None, "❗ Language is required for XTTS model."
            assert (
                language in self.SUPPORTED_LANGUAGES
            ), f"❗ Language {language} is not yet supported. Check https://docs.coqui.ai/reference/samples_xtts_create."
        return text, speaker_name, speaker_id, emotion, speed, language

    def tts(
        self,
        text: str,
        speaker_name: str = None,
        speaker_id=None,
        emotion=None,
        speed=1.0,
        language=None,  # pylint: disable=unused-argument
    ) -> Tuple[np.ndarray, int]:
        """Synthesize speech from text.

        Args:
            text (str): Text to synthesize.
            speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
                voices (user generated speakers) with `list_voices()`.
            speaker_id (str): Speaker ID. If None, the speaker name is used.
            emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only
                supported by `V1` model. Defaults to None.
            speed (float): Speed of the speech. 1.0 is normal speed.
            language (str): Language of the text. If None, the default language of the speaker is used. Language is only
                supported by `XTTS` model. See https://docs.coqui.ai/reference/samples_xtts_create for supported languages.
        """
        self._check_token()
        self.ping_api()

        if speaker_name is None and speaker_id is None:
            raise ValueError(" [!] Please provide either a `speaker_name` or a `speaker_id`.")
        if speaker_id is None:
            speaker = self.name_to_speaker(speaker_name)
        else:
            speaker = self.id_to_speaker(speaker_id)

        text, speaker_name, speaker_id, emotion, speed, language = self._check_tts_args(
            text, speaker_name, speaker_id, emotion, speed, language
        )

        conn = http.client.HTTPSConnection("app.coqui.ai")
        payload = self._create_payload(self.model, text, speaker, speed, emotion, language)
        url = self.MODEL_ENDPOINTS[self.model]["synthesize"]
        conn.request("POST", url, json.dumps(payload), self.headers)
        res = conn.getresponse()
        data = res.read()
        try:
            wav, sr = self.url_to_np(json.loads(data)["audio_url"])
        except KeyError as e:
            raise ValueError(f" [!] 🐸 API returned error: {data}") from e
        return wav, sr

    def tts_to_file(
        self,
        text: str,
        speaker_name: str,
        speaker_id=None,
        emotion=None,
        speed=1.0,
        pipe_out=None,
        language=None,
        file_path: str = None,
    ) -> str:
        """Synthesize speech from text and save it to a file.

        Args:
            text (str): Text to synthesize.
            speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
                voices (user generated speakers) with `list_voices()`.
            speaker_id (str): Speaker ID. If None, the speaker name is used.
            emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
            speed (float): Speed of the speech. 1.0 is normal speed.
            pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
            language (str): Language of the text. If None, the default language of the speaker is used. Language is only
                supported by `XTTS` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en".
            file_path (str): Path to save the file. If None, a temporary file is created.
        """
        if file_path is None:
            file_path = tempfile.mktemp(".wav")
        wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language)
        save_wav(wav=wav, path=file_path, sample_rate=sr, pipe_out=pipe_out)
        return file_path


if __name__ == "__main__":
    import time

    api = CS_API()
    print(api.speakers)
    print(api.list_speakers_as_tts_models())

    ts = time.time()
    wav, sr = api.tts(
        "It took me quite a long time to develop a voice.", language="en", speaker_name=api.speakers[0].name
    )
    print(f" [i] XTTS took {time.time() - ts:.2f}s")

    filepath = api.tts_to_file(
        text="Hello world!", speaker_name=api.speakers[0].name, language="en", file_path="output.wav"
    )