Spaces:
Sleeping
Sleeping
File size: 1,297 Bytes
d9f0b09 6503948 77c3c13 6503948 3f5c0c0 6503948 3f5c0c0 6503948 d9f0b09 3f5c0c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
import supervision as sv
import json
id2label = {0: 'dangerous-items', 1: 'Gun', 2: 'Knife', 3: 'Pliers', 4: 'Scissors', 5: 'Wrench'}
def anylize(image):
with torch.no_grad():
inputs = image_processor(images=image, return_tensors='pt')
outputs = model(**inputs)
target_sizes = torch.tensor([image.shape[:2]])
results = image_processor.post_process_object_detection(
outputs=outputs,
threshold=0.8,
target_sizes=target_sizes
)[0]
# annotate
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5)
out = {}
for idx, detection in enumerate(detections):
cls = id2label[detection.class_id]
confidence = detection.confidence
box = detection.xyxy
out[str(idx)] = {
"box":list(box),
"cls":cls,
"conf":confidence
}
#labels = [str([list(xyxy), confidence, id2label[class_id]]) for xyxy, _, confidence, class_id, _ in detections]
#json_list = json.dumps(str(labels[0]))
return out
gr.Interface(fn = anylize, inputs="image", outputs=gr.JSON()).launch() |