Spaces:
Sleeping
Sleeping
File size: 11,402 Bytes
999b5dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import streamlit as st
from dotenv import load_dotenv
import google.generativeai as genai
import os
from youtube_transcript_api import YouTubeTranscriptApi
import time
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
from google.api_core.exceptions import ResourceExhausted
# Load environment variables from a .env file
load_dotenv()
# Configure the Google Generative AI client with the API key from environment variables
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type(ResourceExhausted),
reraise=True
)
def generate_content_with_retry(model, prompt):
time.sleep(2) # Increased delay between API calls
try:
return model.generate_content(prompt)
except ResourceExhausted as e:
st.warning(f"API quota exceeded. Retrying in a moment... ({e})")
raise e
# Define the base prompt template
base_prompt_template = '''
You are an AI assistant specializing in transforming long-form content, such as YouTube video transcripts or user-provided text, into a single, cohesive, and engaging blog post. Your task is to create a comprehensive blog post that captures the essence of the entire input while enriching it with additional information, insights, and a conversational touch.
Guidelines for the Blog Post:
1. Structure:
- Title: Create an engaging title for the blog post.
- Meta Description: Write a compelling 150-160 character meta description for SEO.
- Introduction: Briefly introduce the topic and hook the reader.
- Main Body: Divide into relevant sections with subheadings. Ensure smooth transitions between sections.
- Conclusion: Summarize key points and provide a call-to-action.
2. Content Enhancement:
- Synthesize information from all parts of the input to create a coherent narrative.
- Provide additional explanations, examples, or related information to enrich the content.
- Include interesting anecdotes or expert opinions to add depth and credibility.
3. Engagement:
- Use a {tone} tone consistently throughout the post.
- Include relevant descriptions of potential visuals or infographics.
- Structure the post for easy readability using subheadings, bullet points, and short paragraphs.
4. SEO Optimization:
- Naturally incorporate these keywords: {keywords}
- Use variations and related terms to avoid keyword stuffing.
- Implement proper heading structure (H1 for title, H2 for main sections, H3 for subsections).
5. Length and Style:
- Aim for a total of approximately {word_count} words for the entire blog post.
- Use varied sentence structures and paragraph lengths for better flow.
- Incorporate rhetorical devices like analogies, metaphors, or storytelling elements where appropriate.
6. Cohesion:
- Ensure that all parts of the blog post connect logically and flow smoothly.
- Use transitional phrases to link different sections and ideas.
- Maintain consistent themes and arguments throughout the post.
7. Formatting:
- Use appropriate HTML tags for headings (h1, h2, h3), lists (ul, ol), and emphasis (strong, em).
- Suggest places to break up text with [IMAGE PLACEHOLDER] or [VIDEO EMBED PLACEHOLDER] tags.
- Include a table of contents for longer articles.
8. Additional Elements:
- Create a "Key Takeaways" or "TL;DR" section for quick reference.
- Suggest pull quotes or highlight boxes for important information.
- If applicable, include a section addressing common questions or misconceptions about the topic.
Important: Create only ONE cohesive blog post that covers all the main points from the entire input. Ensure that the final output is a single, well-structured article, not multiple separate posts.
Please create a single, detailed, and engaging blog post based on the following input:
{input_text}
Remember to maintain a {tone} tone throughout the post and aim for a total of {word_count} words for the entire article.
'''
# Expanded tone options
TONE_OPTIONS = [
"Professional", "Casual", "Humorous", "Inspirational", "Educational",
"Conversational", "Formal", "Enthusiastic", "Empathetic", "Authoritative"
]
# Article length options
LENGTH_OPTIONS = {
"Medium (1000-1500 words)": 1250,
"Long (1500-2500 words)": 2000,
"Extra Long (2500-3500 words)": 3000,
"Comprehensive (3500-5000 words)": 4250
}
# Function to extract video ID from various YouTube URL formats
def extract_video_id(url):
patterns = [
r'(?:https?:\/\/)?(?:www\.)?(?:youtube\.com|youtu\.be)\/(?:watch\?v=)?(?:embed\/)?(?:v\/)?(?:shorts\/)?(?:live\/)?(?:feature=player_embedded&v=)?([^?&"\'>]+)',
]
for pattern in patterns:
match = re.search(pattern, url)
if match:
return match.group(1)
return None
import threading
# Cache for storing processed data
cache = {}
cache_lock = threading.Lock()
# Optimized transcript fetching with caching
@st.cache_data
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def get_transcript(youtube_video_url, max_retries=3, delay=2):
video_id = extract_video_id(youtube_video_url)
if not video_id:
raise ValueError("Invalid YouTube URL")
# Check cache first
if video_id in cache:
return cache[video_id]
for attempt in range(max_retries):
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
text = " ".join([entry["text"] for entry in transcript])
# Cache the result
with cache_lock:
cache[video_id] = text
return text
except Exception as e:
if attempt == max_retries - 1:
raise e
time.sleep(delay * (attempt + 1)) # Exponential backoff
raise Exception("Failed to retrieve transcript after multiple attempts")
# Function to chunk long text
def chunk_text(text, chunk_size=4000, overlap=500):
# Only chunk if text is longer than chunk_size
if len(text) <= chunk_size:
return [text]
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
# Find the nearest sentence end
if end < len(text):
end = text.rfind('.', start, end) + 1
if end <= start:
end = start + chunk_size
chunk = text[start:end].strip()
if chunk:
chunks.append(chunk)
start = end - overlap
return chunks
# Function to generate blog post using Gemini AI model with retries
def generate_blog_post(input_text, tone, keywords, length):
word_count = LENGTH_OPTIONS[length]
chunks = chunk_text(input_text)
model = genai.GenerativeModel("gemini-1.5-flash")
all_content = []
for i, chunk in enumerate(chunks):
chunk_prompt = f"""
Analyze the following part of content and extract key points, main ideas, and important details:
{chunk}
Provide a concise summary of this part, highlighting the most important information.
"""
try:
response = generate_content_with_retry(model, chunk_prompt)
all_content.append(response.text)
except Exception as e:
st.error(f"Error processing chunk {i+1}: {str(e)}")
return None
final_prompt = base_prompt_template.format(
tone=tone,
keywords=', '.join(keywords),
word_count=word_count,
input_text='\n'.join(all_content)
)
try:
final_response = generate_content_with_retry(model, final_prompt)
return final_response.text
except Exception as e:
st.error(f"Error generating final blog post: {str(e)}")
return None
# Streamlit UI with progress tracking
def main():
st.set_page_config(page_title="BlogBrain Genius AI", layout="wide")
# Initialize session state
if 'blog_post' not in st.session_state:
st.session_state.blog_post = None
if 'processing' not in st.session_state:
st.session_state.processing = False
st.title("βοΈ BlogBrain Genius AI: Video to Blog Alchemist")
# Input method selection with proper state management
input_method = st.radio("Choose input method:", ("YouTube Video", "Custom Text"))
input_text = ""
if input_method == "YouTube Video":
youtube_url = st.text_input("Enter YouTube URL:")
if youtube_url and not st.session_state.processing:
try:
with st.spinner("Fetching transcript..."):
input_text = get_transcript(youtube_url)
except Exception as e:
st.error(f"Error: {str(e)}")
else:
input_text = st.text_area("Enter your content:", height=200)
# Sidebar options
with st.sidebar:
st.markdown("<h1 style='text-align: center; color: #4A90E2;'>π§ BlogBrain Genius AI</h1>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center;'>Transform Content into Engaging Blog Posts</p>", unsafe_allow_html=True)
st.markdown("---")
tone = st.selectbox("Select tone:", TONE_OPTIONS)
keywords = st.text_input("Enter keywords (comma-separated):")
length = st.selectbox("Select length:", list(LENGTH_OPTIONS.keys()))
if st.button("Generate Blog Post") and input_text:
st.session_state.processing = True
try:
with st.spinner("Generating a single, comprehensive blog post..."):
blog_post = generate_blog_post(
input_text,
tone,
keywords.split(",") if keywords else [],
length
)
if blog_post:
st.session_state.blog_post = blog_post
st.success("Blog post generated successfully!")
else:
st.error("Failed to generate the blog post. Please try again later.")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
finally:
st.session_state.processing = False
# Display results
if st.session_state.blog_post:
st.markdown(st.session_state.blog_post)
st.download_button(
"Download Blog Post",
st.session_state.blog_post,
"blog_post.md",
"text/markdown"
)
if __name__ == "__main__":
main()
# Sidebar with creator information
st.sidebar.markdown("---")
st.sidebar.title("About the Creator")
st.sidebar.info("""
Designed by Richardson Gunde π¨
This advanced application uses AI to generate a single, comprehensive blog post based on long-form content from YouTube videos or user input.
π [LinkedIn](https://www.linkedin.com/in/richardson-gunde)
π§ [Email](mailto:gunderichardson@gmail.com)
""")
st.markdown("""
---
:green[This advanced app leverages the power of Google's Gemini AI to generate a single, detailed, SEO-optimized long-form blog post from YouTube videos or custom text.
It handles extensive content while ensuring a cohesive output.]
""") |