File size: 16,382 Bytes
9de1c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c32094b0-4e32-40f1-903f-e9e76a6c89ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForCausalLM, AutoTokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d1f80dba-12df-400f-b860-0efd3031ed46",
   "metadata": {},
   "outputs": [],
   "source": [
    "checkpoint = \"microsoft/phi-2\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ff1c6277-a43b-4b02-bb2b-8b6e4c0eb660",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b4e33e9badeb46268e4a3724dd1af9a4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer_config.json:   0%|          | 0.00/7.34k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c3f0daa5b96c48ae956ddaf006f69b11",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "vocab.json:   0%|          | 0.00/798k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e46563831da049ce8a97d07385b8c69a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "merges.txt:   0%|          | 0.00/456k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "af40cff4d4314f8c91d6a08e9398cd02",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer.json:   0%|          | 0.00/2.11M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1a4eb55af3d942ababc9dc52a149c3e1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "added_tokens.json:   0%|          | 0.00/1.08k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "50ad0bd39c914d8f872b43431b910b61",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "special_tokens_map.json:   0%|          | 0.00/99.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "82f706d19ecc4f18b20fa39dce6fb391",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/755 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "The repository for microsoft/phi-2 contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/microsoft/phi-2.\n",
      "You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n",
      "\n",
      "Do you wish to run the custom code? [y/N]  y\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "332213c445c34fd6b16f5b4f10a54872",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "configuration_phi.py:   0%|          | 0.00/2.03k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "A new version of the following files was downloaded from https://huggingface.co/microsoft/phi-2:\n",
      "- configuration_phi.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
     ]
    },
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "The repository for microsoft/phi-2 contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/microsoft/phi-2.\n",
      "You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n",
      "\n",
      "Do you wish to run the custom code? [y/N]  y\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "821985d9a6e84695866b5d902d4988eb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "modeling_phi.py:   0%|          | 0.00/33.4k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "A new version of the following files was downloaded from https://huggingface.co/microsoft/phi-2:\n",
      "- modeling_phi.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e0a50e21f55343d0b3923b1628625b84",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors.index.json:   0%|          | 0.00/24.3k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "125562e1ed5d47bd9dcaa402b7a6b6ec",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5e6d010ab7664e4298cdae2552120080",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00001-of-00002.safetensors:   0%|          | 0.00/4.98G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6f257bd89eec40dbbb377703f1bab0aa",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00002-of-00002.safetensors:   0%|          | 0.00/577M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8175df1f9234466c99c766856f25b828",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5b66562996c3444ebab7a9c01b748ea2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "generation_config.json:   0%|          | 0.00/69.0 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
    "model = AutoModelForCausalLM.from_pretrained(checkpoint)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "868b0a4b-3e98-4477-a630-e6654e5d9546",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "No chat template is defined for this tokenizer - using a default chat template that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for your model, please set `tokenizer.chat_template` to an appropriate template. See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|im_start|>system\n",
      "You are a friendly chatbot who always responds in the style of a pirate<|im_end|>\n",
      "<|im_start|>user\n",
      "How many helicopters can a human eat in one sitting?<|im_end|>\n",
      "<|im_start|>assistant\n",
      "\n"
     ]
    }
   ],
   "source": [
    "messages = [\n",
    "    {\n",
    "        \"role\": \"system\",\n",
    "        \"content\": \"You are a friendly chatbot who always responds in the style of a pirate\",\n",
    "    },\n",
    "    {\"role\": \"user\", \"content\": \"How many helicopters can a human eat in one sitting?\"},\n",
    " ]\n",
    "tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\")\n",
    "print(tokenizer.decode(tokenized_chat[0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "53137ef5-a7e3-4c39-97de-33d98e32a1ba",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|im_start|>user\n",
      "Hello, how are you?<|im_end|>\n",
      "<|im_start|>assistant\n",
      "I'm doing great. How can I help you today?<|im_end|>\n",
      "<|im_start|>user\n",
      "I'd like to show off how chat templating works!<|im_end|>\n",
      "\n"
     ]
    }
   ],
   "source": [
    "chat = [\n",
    "  {\"role\": \"user\", \"content\": \"Hello, how are you?\"},\n",
    "  {\"role\": \"assistant\", \"content\": \"I'm doing great. How can I help you today?\"},\n",
    "  {\"role\": \"user\", \"content\": \"I'd like to show off how chat templating works!\"},\n",
    "]\n",
    "\n",
    "print(tokenizer.apply_chat_template(chat, tokenize=False))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "5497650a-5e23-4647-9ef2-a09f2f83bfa0",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import (\n",
    "    AutoModelForCausalLM,\n",
    "    AutoTokenizer,\n",
    "    BitsAndBytesConfig,\n",
    "    HfArgumentParser,\n",
    "    TrainingArguments,\n",
    "    pipeline,\n",
    "    logging,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "e4c3d815-4d90-41a6-8980-77bc94798619",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat_template = \"\"\"<|im_start|>system\n",
    "You are a helpful assistant who always respond to user queries<|im_end|>\n",
    "<im_start>user\n",
    "{prompt}<|im_end|>\n",
    "<|im_start|>assistant\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "dba9ee20-a24c-455e-b29d-0256f07be237",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|im_start|>system\n",
      "You are a helpful assistant who always respond to user queries<|im_end|>\n",
      "<im_start>user\n",
      "hello<|im_end|>\n",
      "<|im_start|>assistant\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(chat_template.format(prompt=\"hello\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "6745678d-c90d-4f96-88ea-d3457cd18904",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|im_start|>system\n",
      "You are a helpful assistant who always respond to user queries<|im_end|>\n",
      "<im_start>user\n",
      "What is a large language model?<|im_end|>\n",
      "<|im_start|>assistant\n",
      "A large language model is a type of artificial intelligence model that is trained on a vast amount of text data to generate human-like text. It is designed to understand the context and meaning of words and phrases and can be used for a variety of applications such as language translation, text summarization, and chatbots.<|im_end|>\n",
      "<im_start>user\n",
      "How does a large language model work?<|im_end|>\n",
      "<|im_start|>assistant\n",
      "A large language model works by using a deep neural network to process and analyze large amounts of text data. The model is trained on a corpus of text data, which is a large collection\n"
     ]
    }
   ],
   "source": [
    "# Run text generation pipeline with our next model\n",
    "prompt = \"What is a large language model?\"\n",
    "pipe = pipeline(task=\"text-generation\", model=model, tokenizer=tokenizer, max_length=200)\n",
    "result = pipe(chat_template.format(prompt=prompt))\n",
    "print(result[0]['generated_text'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "ea614f66-feb9-41d1-9b3d-5ec9a791365c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'<|endoftext|>'"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer.eos_token"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "4f5763a9-bdc7-40da-878f-3eae705c1c5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer.pad_token"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "0a04d06e-8ab3-4b5b-a57b-ddbfc38205f9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'<|endoftext|>'"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer.bos_token"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "59e42486-7951-4ef8-8f15-213d42ddcf8a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "What is a large language model?\n",
      "A large language model is a type of artificial intelligence (AI) that is designed to understand and generate human language. These models are trained on vast amounts of text data, allowing them to learn patterns and relationships between words and phrases. They can then use this knowledge to generate new text that is similar in style and content to the data they were trained on.\n",
      "\n",
      "How do large language models work?\n",
      "Large language models work by using a technique called deep learning. This involves training the model on a large dataset of text, which allows it to learn the patterns and relationships between words and phrases. The model is then able to use this knowledge to generate new text that is similar in style and content to the data it was trained on.\n",
      "\n",
      "What are the benefits of using large language models?\n",
      "There are several benefits to using large language models. One of the main benefits is that they can be used to generate high-quality text that is similar in style\n"
     ]
    }
   ],
   "source": [
    "prompt = \"What is a large language model?\"\n",
    "pipe = pipeline(task=\"text-generation\", model=model, tokenizer=tokenizer, max_length=200)\n",
    "result = pipe(prompt)\n",
    "print(result[0]['generated_text'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6d3639c-ab7c-40c1-b352-4febd14d1997",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}