Spaces:
Sleeping
Sleeping
File size: 1,136 Bytes
c9f7418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
# Load the model and tokenizer
model_name = "AventIQ-AI/distilbert-base-uncased-sentiment-analysis"
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = DistilBertForSequenceClassification.from_pretrained(model_name)
def predict_sentiment(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = torch.argmax(logits, dim=-1).item()
sentiment = "Positive" if predicted_class_id == 1 else "Negative"
return sentiment
# Create Gradio interface
iface = gr.Interface(
fn=predict_sentiment,
inputs=gr.Textbox(lines=3, placeholder="Enter text for sentiment analysis..."),
outputs=gr.Textbox(label="Sentiment"),
title="DistilBERT Sentiment Analysis",
description="Enter a sentence to classify its sentiment as Positive or Negative using a fine-tuned DistilBERT model.",
)
if __name__ == "__main__":
iface.launch() |