File size: 28,698 Bytes
a028319 2093a1b a028319 1158f50 a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 2093a1b a028319 e71c5f8 a028319 e71c5f8 a028319 2093a1b a028319 e71c5f8 a028319 2093a1b a028319 e71c5f8 a028319 e71c5f8 2093a1b a028319 e71c5f8 2093a1b a028319 e71c5f8 2093a1b a028319 1158f50 24f5a4b 1158f50 24f5a4b 1158f50 24f5a4b 1158f50 2093a1b 1158f50 2093a1b 1158f50 2093a1b 24f5a4b 1158f50 2093a1b 24f5a4b 1158f50 2093a1b 1158f50 24f5a4b 1158f50 24f5a4b 1158f50 24f5a4b 1158f50 24f5a4b 1158f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
from collections import Counter
from streamlit_echarts import st_echarts # pylint: disable=import-error
import numpy as np
import pandas as pd
import streamlit as st # pylint: disable=import-error
import plotly.figure_factory as ff
from plotly import graph_objs as go
import plotly.express as px
from statistics import median
colors = {
"blue": "#5470c6",
"orange": "#FF7F0E",
"green": "#94cc74",
"saffron_mango": "#fac858",
"red": "#ee6666",
"light_blue": "#73c0de",
"ocean_green": "#3ba272",
}
device_colors = {
"x86": colors["blue"],
"nvidia": colors["green"],
"groq": colors["orange"],
}
class StageCount:
def __init__(self, df: pd.DataFrame) -> None:
self.all_models = len(df)
self.base_onnx = int(np.sum(df["base_onnx"]))
self.optimized_onnx = int(np.sum(df["optimized_onnx"]))
self.all_ops_supported = int(np.sum(df["all_ops_supported"]))
self.fp16_onnx = int(np.sum(df["fp16_onnx"]))
self.compiles = int(np.sum(df["compiles"]))
self.assembles = int(np.sum(df["assembles"]))
class DeviceStageCount:
def __init__(self, df: pd.DataFrame) -> None:
self.all_models = len(df)
self.base_onnx = int(np.sum(df["onnx_exported"]))
self.optimized_onnx = int(np.sum(df["onnx_optimized"]))
self.fp16_onnx = int(np.sum(df["onnx_converted"]))
self.x86 = df.loc[df.x86_latency != "-", "x86_latency"].count()
self.nvidia = df.loc[df.nvidia_latency != "-", "nvidia_latency"].count()
self.groq = df.loc[
df.groq_estimated_latency != "-", "groq_estimated_latency"
].count()
def stages_count_summary(current_df: pd.DataFrame, prev_df: pd.DataFrame) -> None:
"""
Show count of how many models compile, assemble, etc
"""
current = StageCount(current_df)
prev = StageCount(prev_df)
kpi = st.columns(7)
kpi[0].metric(
label="All models",
value=current.all_models,
delta=current.all_models - prev.all_models,
)
kpi[1].metric(
label="Converts to ONNX",
value=current.base_onnx,
delta=current.base_onnx - prev.base_onnx,
)
kpi[2].metric(
label="Optimizes ONNX file",
value=current.optimized_onnx,
delta=current.optimized_onnx - prev.optimized_onnx,
)
kpi[3].metric(
label="Supports all ops",
value=current.all_ops_supported,
delta=current.all_ops_supported - prev.all_ops_supported,
)
kpi[4].metric(
label="Converts to FP16",
value=current.fp16_onnx,
delta=current.fp16_onnx - prev.fp16_onnx,
)
kpi[5].metric(
label="Compiles",
value=current.compiles,
delta=current.compiles - prev.compiles,
)
kpi[6].metric(
label="Assembles",
value=current.assembles,
delta=current.assembles - prev.assembles,
)
# Show Sankey graph with percentages
sk_val = {
"All models": "100%",
"Converts to ONNX": str(int(100 * current.base_onnx / current.all_models))
+ "%",
"Optimizes ONNX file": str(
int(100 * current.optimized_onnx / current.all_models)
)
+ "%",
"Supports all ops": str(
int(100 * current.all_ops_supported / current.all_models)
)
+ "%",
"Converts to FP16": str(int(100 * current.fp16_onnx / current.all_models))
+ "%",
"Compiles": str(int(100 * current.compiles / current.all_models)) + "%",
"Assembles": str(int(100 * current.assembles / current.all_models)) + "%",
}
option = {
"series": {
"type": "sankey",
"animationDuration": 1,
"top": "0%",
"bottom": "20%",
"left": "0%",
"right": "13.5%",
"darkMode": "true",
"nodeWidth": 2,
"textStyle": {"fontSize": 16},
"lineStyle": {"curveness": 0},
"layoutIterations": 0,
"layout": "none",
"emphasis": {"focus": "adjacency"},
"data": [
{
"name": "All models",
"value": sk_val["All models"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Converts to ONNX",
"value": sk_val["Converts to ONNX"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Optimizes ONNX file",
"value": sk_val["Optimizes ONNX file"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Supports all ops",
"value": sk_val["Supports all ops"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Converts to FP16",
"value": sk_val["Converts to FP16"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Compiles",
"value": sk_val["Compiles"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Assembles",
"value": sk_val["Assembles"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
],
"label": {
"position": "insideTopLeft",
"borderWidth": 0,
"fontSize": 16,
"color": "white",
"textBorderWidth": 0,
"formatter": "{c}",
},
"links": [
{
"source": "All models",
"target": "Converts to ONNX",
"value": current.base_onnx,
},
{
"source": "Converts to ONNX",
"target": "Optimizes ONNX file",
"value": current.optimized_onnx,
},
{
"source": "Optimizes ONNX file",
"target": "Supports all ops",
"value": current.all_ops_supported,
},
{
"source": "Supports all ops",
"target": "Converts to FP16",
"value": current.fp16_onnx,
},
{
"source": "Converts to FP16",
"target": "Compiles",
"value": current.compiles,
},
{
"source": "Compiles",
"target": "Assembles",
"value": current.assembles,
},
],
}
}
st_echarts(
options=option,
height="50px",
)
def workload_origin(df: pd.DataFrame) -> None:
"""
Show pie chart that groups models by author
"""
all_authors = list(df.loc[:, "author"])
author_count = {i: all_authors.count(i) for i in all_authors}
all_models = len(df)
options = {
"darkMode": "true",
"textStyle": {"fontSize": 16},
"tooltip": {"trigger": "item"},
"series": [
{ # "Invisible" chart, used to show author labels
"name": "Name of corpus:",
"type": "pie",
"radius": ["70%", "70%"],
"data": [
{"value": author_count[k], "name": k} for k in author_count.keys()
],
"label": {
"formatter": "{b}\n{d}%",
},
},
{
# Actual graph where data is shown
"name": "Name of corpus:",
"type": "pie",
"radius": ["50%", "70%"],
"data": [
{"value": author_count[k], "name": k} for k in author_count.keys()
],
"emphasis": {
"itemStyle": {
"shadowBlur": 10,
"shadowOffsetX": 0,
"shadowColor": "rgba(0, 0, 0, 0.5)",
}
},
"label": {
"position": "inner",
"formatter": "{c}",
"color": "black",
"textBorderWidth": 0,
},
},
{
# Show total number of models inside
"name": "Total number of models:",
"type": "pie",
"radius": ["0%", "0%"],
"data": [{"value": all_models, "name": "Total"}],
"silent": "true",
"label": {
"position": "inner",
"formatter": "{c}",
"color": "white",
"fontSize": 30,
"textBorderWidth": 0,
},
},
],
}
st_echarts(
options=options,
height="400px",
)
def parameter_histogram(df: pd.DataFrame, show_assembled=True) -> None:
# Add parameters histogram
all_models = [float(x) / 1000000 for x in df["params"] if x != "-"]
hist_data = []
group_labels = []
if all_models != []:
hist_data.append(all_models)
if show_assembled:
group_labels.append("Models we tried compiling")
else:
group_labels.append("All models")
if show_assembled:
assembled_models = df[
df["assembles"] == True # pylint: disable=singleton-comparison
]
assembled_models = [
float(x) / 1000000 for x in assembled_models["params"] if x != "-"
]
if assembled_models != []:
hist_data.append(assembled_models)
group_labels.append("Assembled models")
if hist_data:
fig = ff.create_distplot(
hist_data,
group_labels,
bin_size=25,
histnorm="",
colors=list(colors.values()),
curve_type="normal",
)
fig.layout.update(xaxis_title="Parameters in millions")
fig.layout.update(yaxis_title="count")
fig.update_xaxes(range=[1, 1000])
st.plotly_chart(fig, use_container_width=True)
else:
st.markdown(
"""At least one model needs to reach the compiler to show this graph 😅"""
)
def speedup_bar_chart_legacy(df: pd.DataFrame) -> None:
"""
This function will be removed when we start getting CPU numbers for the daily tests
"""
# Prepare data
assembles = np.sum(df["assembles"])
df = df[["model_name", "groq_nvidia_compute_ratio", "groq_nvidia_e2e_ratio"]]
df = df.sort_values(by=["model_name"])
df = df[(df.groq_nvidia_compute_ratio != "-")]
df = df[(df.groq_nvidia_e2e_ratio != "-")]
df["groq_nvidia_compute_ratio"] = df["groq_nvidia_compute_ratio"].astype(float)
df["groq_nvidia_e2e_ratio"] = df["groq_nvidia_e2e_ratio"].astype(float)
if len(df) == 0 and assembles > 0:
st.markdown(
(
"We do not have GPU numbers for the model(s) mapped to the GroqChip."
" This is potentially due to lack of out-of-the-box TensorRT support."
)
)
elif assembles == 0:
st.markdown(
"Nothing to show here since no models have been successfully assembled."
)
else:
data = [
go.Bar(
x=df["model_name"],
y=df["groq_nvidia_compute_ratio"],
name="Compute only",
),
go.Bar(
x=df["model_name"],
y=df["groq_nvidia_e2e_ratio"],
name="Compute + estimated I/O",
),
]
layout = go.Layout(
barmode="overlay",
yaxis_title="Speedup compared to A100 GPU",
colorway=list(colors.values()),
)
fig = dict(data=data, layout=layout)
st.plotly_chart(fig, use_container_width=True)
st.markdown(
(
"<sup>*</sup>Estimated I/O does NOT include delays caused by Groq's runtime. "
"See FAQ for details."
),
unsafe_allow_html=True,
)
def speedup_text_summary_legacy(df: pd.DataFrame) -> None:
# pylint: disable=line-too-long
"""
This function will be removed when we start getting CPU numbers for the daily tests
"""
# Remove empty elements and convert to float
df = df[(df.groq_nvidia_compute_ratio != "-")]
df = df[(df.groq_nvidia_e2e_ratio != "-")]
df["groq_nvidia_compute_ratio"] = df["groq_nvidia_compute_ratio"].astype(float)
df["groq_nvidia_e2e_ratio"] = df["groq_nvidia_e2e_ratio"].astype(float)
# Show stats
st.markdown(
f"""<br><br><br><br><br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute only:</p>
<p style="font-family:sans-serif; color:{colors["blue"]}; font-size: 26px;text-align: center;"> {round(df["groq_nvidia_compute_ratio"].mean(),2)}x</p>
<p style="font-family:sans-serif; color:{colors["blue"]}; font-size: 20px;text-align: center;"> min {round(df["groq_nvidia_compute_ratio"].min(),2)}x; median {round(median(df["groq_nvidia_compute_ratio"]),2)}x; max {round(df["groq_nvidia_compute_ratio"].max(),2)}x</p>
<br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Average speedup of GroqChip™ considering compute + estimated I/O<sup>*</sup>:</p>
<p style="font-family:sans-serif; color:{colors["orange"]}; font-size: 26px;text-align: center;"> {round(df["groq_nvidia_e2e_ratio"].mean(),2)}x</p>
<p style="font-family:sans-serif; color:{colors["orange"]}; font-size: 20px;text-align: center;"> min {round(df["groq_nvidia_e2e_ratio"].min(),2)}x; median {round(median(df["groq_nvidia_e2e_ratio"]),2)}x; max {round(df["groq_nvidia_e2e_ratio"].max(),2)}x</p>""",
unsafe_allow_html=True,
)
def process_latency_data(df, baseline):
df = df[["model_name", "groq_estimated_latency", "nvidia_latency", "x86_latency"]]
df = df.rename(columns={"groq_estimated_latency": "groq_latency"})
df = df.sort_values(by=["model_name"])
df.x86_latency.replace(["-"], [float("inf")], inplace=True)
df.nvidia_latency.replace(["-"], [float("inf")], inplace=True)
df.groq_latency.replace(["-"], [float("inf")], inplace=True)
df["groq_latency"] = df["groq_latency"].astype(float)
df["nvidia_latency"] = df["nvidia_latency"].astype(float)
df["x86_latency"] = df["x86_latency"].astype(float)
df["groq_compute_ratio"] = df[f"{baseline}_latency"] / df["groq_latency"]
df["nvidia_compute_ratio"] = df[f"{baseline}_latency"] / df["nvidia_latency"]
df["x86_compute_ratio"] = df[f"{baseline}_latency"] / df["x86_latency"]
return df
def speedup_bar_chart(df: pd.DataFrame, baseline) -> None:
if len(df) == 0:
st.markdown(
("Nothing to show here since no models have been successfully benchmarked.")
)
else:
df = process_latency_data(df, baseline)
bar_chart = {}
bar_chart["nvidia"] = go.Bar(
x=df["model_name"],
y=df["nvidia_compute_ratio"],
name="NVIDIA A100",
)
bar_chart["groq"] = go.Bar(
x=df["model_name"],
y=df["groq_compute_ratio"],
name="GroqChip 1",
)
bar_chart["x86"] = go.Bar(
x=df["model_name"],
y=df["x86_compute_ratio"],
name="Intel(R) Xeon(R)",
)
# Move baseline to the back of the plot
plot_sequence = list(bar_chart.keys())
plot_sequence.insert(0, plot_sequence.pop(plot_sequence.index(baseline)))
# Ensure that the baseline is the last bar
data = [bar_chart[device_type] for device_type in plot_sequence]
color_sequence = [device_colors[device_type] for device_type in plot_sequence]
layout = go.Layout(
barmode="overlay", # group
legend={
"orientation": "h",
"xanchor": "center",
"x": 0.5,
"y": 1.2,
},
yaxis_title="Latency Speedup",
colorway=color_sequence,
height=500,
)
fig = dict(data=data, layout=layout)
st.plotly_chart(fig, use_container_width=True)
st.markdown(
"<sup>*</sup>Estimated I/O does NOT include delays caused by Groq's runtime.",
unsafe_allow_html=True,
)
def kpi_to_markdown(
compute_ratio, device, num_baseline_models, is_baseline=False, color="blue"
):
if is_baseline:
title = f"""<br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Median {device} Acceleration ({len(compute_ratio)} models):</p>"""
return (
title
+ f"""<p style="font-family:sans-serif; color:{colors[color]}; font-size: 26px;text-align: center;"> {1}x (Baseline)</p>"""
)
title = f"""<br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Median {device} Acceleration ({len(compute_ratio)}/{num_baseline_models} models):</p>"""
if len(compute_ratio) > 0:
kpi_min, kpi_median, kpi_max = (
round(compute_ratio.min(), 2),
round(median(compute_ratio), 2),
round(compute_ratio.max(), 2),
)
else:
kpi_min, kpi_median, kpi_max = 0, 0, 0
return (
title
+ f"""<p style="font-family:sans-serif; color:{colors[color]}; font-size: 26px;text-align: center;"> {kpi_median}x</p>
<p style="font-family:sans-serif; color:{colors[color]}; font-size: 20px;text-align: center;"> min {kpi_min}x; max {kpi_max}x</p>
"""
)
def speedup_text_summary(df: pd.DataFrame, baseline) -> None:
df = process_latency_data(df, baseline)
# Some latencies are "infinite" because they could not be calculated
# To calculate statistics, we remove all elements of df where the baseline latency is inf
df = df[(df[baseline + "_latency"] != float("inf"))]
# Setting latencies that could not be calculated to infinity also causes some compute ratios to be zero
# We remove those to avoid doing any calculations with infinite latencies
x86_compute_ratio = df["x86_compute_ratio"].to_numpy()
nvidia_compute_ratio = df["nvidia_compute_ratio"].to_numpy()
groq_compute_ratio = df["groq_compute_ratio"].to_numpy()
x86_compute_ratio = x86_compute_ratio[x86_compute_ratio != 0]
nvidia_compute_ratio = nvidia_compute_ratio[nvidia_compute_ratio != 0]
groq_compute_ratio = groq_compute_ratio[groq_compute_ratio != 0]
num_baseline_models = len(df[f"{baseline}_compute_ratio"])
x86_text = kpi_to_markdown(
x86_compute_ratio,
device="Intel(R) Xeon(R) X40 CPU @ 2.00GHz",
num_baseline_models=num_baseline_models,
color="blue",
is_baseline=baseline == "x86",
)
groq_text = kpi_to_markdown(
groq_compute_ratio,
device="GroqChip 1 Estimated",
num_baseline_models=num_baseline_models,
color="orange",
is_baseline=baseline == "groq",
)
nvidia_text = kpi_to_markdown(
nvidia_compute_ratio,
device="NVIDIA A100-PCIE-40GB",
num_baseline_models=num_baseline_models,
color="green",
is_baseline=baseline == "nvidia",
)
cols = st.columns(3)
with cols[0]:
st.markdown(f"""{x86_text}""", unsafe_allow_html=True)
with cols[1]:
st.markdown(f"""{nvidia_text}""", unsafe_allow_html=True)
with cols[2]:
st.markdown(f"""{groq_text}""", unsafe_allow_html=True)
def compiler_errors(df: pd.DataFrame) -> None:
compiler_errors = df[df["compiler_error"] != "-"]["compiler_error"]
compiler_errors = Counter(compiler_errors)
if len(compiler_errors) > 0:
compiler_errors = pd.DataFrame.from_dict(
compiler_errors, orient="index"
).reset_index()
compiler_errors = compiler_errors.set_axis(
["error", "count"], axis=1, inplace=False
)
compiler_errors["error"] = [ce[:80] for ce in compiler_errors["error"]]
fig = px.bar(
compiler_errors,
x="count",
y="error",
orientation="h",
height=400,
)
fig.update_traces(marker_color=colors["blue"])
st.plotly_chart(fig, use_container_width=True)
else:
st.markdown("""No compiler errors found :tada:""")
def io_fraction(df: pd.DataFrame) -> None:
fig = go.Figure()
for chips in ["1", "2", "4", "8"]:
tmp = df[[model_entry == chips for model_entry in df["groq_chips_used"]]]
if len(tmp) == 0:
continue
tmp = tmp[[model_entry != "-" for model_entry in tmp["groq_compute_latency"]]]
if len(tmp) == 0:
continue
tmp = tmp[[model_entry != "-" for model_entry in tmp["groq_latency"]]]
if len(tmp) == 0:
continue
print(len(tmp))
compute_latency = tmp["groq_compute_latency"].astype("float")
e2e_latency = tmp["groq_latency"].astype("float")
io_fraction = 1 - compute_latency / e2e_latency
if chips == "1":
name = f"{chips} GroqChip ({len(tmp)} models)"
else:
name = f"{chips} GroqChips \n({len(tmp)} models)"
fig.add_trace(
go.Box(
y=io_fraction,
name=name,
)
)
fig.layout.update(xaxis_title="Models compiled for X GroqChip Processors")
fig.layout.update(yaxis_title="Estimated fraction of time (in %) spent on I/O")
fig.layout.update(colorway=list(colors.values()))
st.plotly_chart(fig, use_container_width=True)
def results_table(df: pd.DataFrame):
model_name = st.text_input("", placeholder="Filter model by name")
if model_name != "":
df = df[[model_name in x for x in df["Model Name"]]]
st.dataframe(df, height=min((len(df) + 1) * 35, 35 * 21))
def device_funnel_metrics(num_models: int, num_total_models: int) -> str:
"""
Calculates the percentage between models and total_models
Avoids ZeroDivisionError when dividend is zero
"""
models_message = f"{num_models} model"
models_message = models_message + "s" if num_models != 1 else models_message
percentage_message = ""
if num_total_models > 0:
model_ratio = num_models / num_total_models
if model_ratio < 0.01 and model_ratio != 0:
percentage_message = " - < 1%"
else:
percentage_message = f" - {int(100*num_models / num_total_models)}%"
return f"{models_message}{percentage_message}"
def device_funnel(df: pd.DataFrame) -> None:
"""
Show count of how many models compile, assemble, etc
"""
summ = DeviceStageCount(df)
stages = [
"All models",
"Export to ONNX",
"Optimize ONNX file",
"Convert to FP16",
"Acquire Performance",
]
cols = st.columns(len(stages))
for idx, stage in enumerate(stages):
with cols[idx]:
st.markdown(stage)
# Show Sankey graph with percentages
sk_val = {
"All models": device_funnel_metrics(summ.all_models, summ.all_models),
"Converts to ONNX": device_funnel_metrics(summ.base_onnx, summ.all_models),
"Optimizes ONNX file": device_funnel_metrics(
summ.optimized_onnx, summ.all_models
),
"Converts to FP16": device_funnel_metrics(summ.fp16_onnx, summ.all_models),
"Acquires Nvidia Perf": device_funnel_metrics(summ.nvidia, summ.all_models)
+ " (Nvidia)",
"Acquires Groq Perf": device_funnel_metrics(summ.groq, summ.all_models)
+ " (Groq)",
"Acquires x86 Perf": device_funnel_metrics(summ.x86, summ.all_models)
+ " (x86)",
}
# Calculate bar heights for each of the devices
# Bar height is proportional to the number of models benchmarked by each device
default_bar_size = 1
target_combined_height = max(default_bar_size, summ.fp16_onnx)
device_bar_size = target_combined_height / 3
option = {
"series": {
"type": "sankey",
"animationDuration": 1,
"top": "0%",
"bottom": "20%",
"left": "0%",
"right": "19%",
"darkMode": "true",
"nodeWidth": 2,
"textStyle": {"fontSize": 16},
"nodeAlign": "left",
"lineStyle": {"curveness": 0},
"layoutIterations": 0,
"nodeGap": 12,
"layout": "none",
"emphasis": {"focus": "adjacency"},
"data": [
{
"name": "All models",
"value": sk_val["All models"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Converts to ONNX",
"value": sk_val["Converts to ONNX"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Optimizes ONNX file",
"value": sk_val["Optimizes ONNX file"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Converts to FP16",
"value": sk_val["Converts to FP16"],
"itemStyle": {"color": "white", "borderColor": "white"},
},
{
"name": "Acquires Nvidia Perf",
"value": sk_val["Acquires Nvidia Perf"],
"itemStyle": {
"color": device_colors["nvidia"],
"borderColor": device_colors["nvidia"],
},
},
{
"name": "Acquires Groq Perf",
"value": sk_val["Acquires Groq Perf"],
"itemStyle": {
"color": device_colors["groq"],
"borderColor": device_colors["groq"],
},
},
{
"name": "Acquires x86 Perf",
"value": sk_val["Acquires x86 Perf"],
"itemStyle": {
"color": device_colors["x86"],
"borderColor": device_colors["x86"],
},
},
],
"label": {
"position": "insideTopLeft",
"borderWidth": 0,
"fontSize": 16,
"color": "white",
"textBorderWidth": 0,
"formatter": "{c}",
},
"links": [
{
"source": "All models",
"target": "Converts to ONNX",
"value": max(default_bar_size, summ.all_models),
},
{
"source": "Converts to ONNX",
"target": "Optimizes ONNX file",
"value": max(default_bar_size, summ.optimized_onnx),
},
{
"source": "Optimizes ONNX file",
"target": "Converts to FP16",
"value": max(default_bar_size, summ.fp16_onnx),
},
{
"source": "Converts to FP16",
"target": "Acquires Nvidia Perf",
"value": device_bar_size,
},
{
"source": "Converts to FP16",
"target": "Acquires Groq Perf",
"value": device_bar_size,
},
{
"source": "Converts to FP16",
"target": "Acquires x86 Perf",
"value": device_bar_size,
},
],
}
}
st_echarts(
options=option,
height="70px",
)
|