Spaces:
Runtime error
Runtime error
File size: 14,337 Bytes
4ba4a77 7a59c48 4ba4a77 7a59c48 4ba4a77 2eb1461 4ba4a77 2c552bf 4ba4a77 952bac4 598a5e3 e1c1f2b fcb89e5 e1c1f2b fcb89e5 6dde126 5bd0c34 4ba4a77 a525e83 549d906 1454b48 a525e83 4ba4a77 1454b48 4b9d0d7 170a3e6 92f6fb9 170a3e6 92f6fb9 4b9d0d7 1454b48 b0438f7 1454b48 7e02446 1454b48 c77ff7d 4ba4a77 6040d3c 4ba4a77 88800a6 b4e4fff 952bac4 b4e4fff 4ba4a77 e6a0513 4ba4a77 2180357 deb8c69 c42f8fb 9e1620d c42f8fb d940b2f 08a437b 49b3735 c42f8fb 3cb995c 316eddd 3cb995c ee7081d 3cb995c 4ba4a77 85c8c30 deb8c69 2180357 deb8c69 6885547 4ba4a77 85c8c30 5a3f02c 4ba4a77 deb8c69 4ba4a77 88800a6 7a4787f 4ba4a77 2180357 4ba4a77 deb8c69 6885547 4ba4a77 2180357 88800a6 4ba4a77 6040d3c f197299 6040d3c 4ba4a77 595c894 6040d3c 4ba4a77 88800a6 6040d3c deb8c69 6040d3c 60f142b deb8c69 88800a6 6040d3c 49b3735 d940b2f 88800a6 49b3735 88800a6 3cb995c a54af95 ee7081d a54af95 3cb995c ee7081d 3cb995c 6040d3c 88800a6 6885547 2180357 6885547 ad66570 88800a6 11add5a 6040d3c 6885547 6040d3c 88800a6 6885547 2180357 6885547 ad66570 1b0b123 88800a6 4ba4a77 7a59c48 7706501 7a59c48 4ba4a77 ab0d3bd 4ba4a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import requests
import random
import time
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from game1 import read1, func1, interpre1, func1_written
from game2 import func2
from game3 import read3, func3, interpre3, func3_written
def ret_en():
return 'en'
def ret_nl():
return 'nl'
def reset_scores():
data = pd.DataFrame(
{
"Role": ["AI π€", "HUMAN π"],
"Scores": [0, 0],
}
)
tot_scores_2 = ''' #### <p style="text-align: center;"> Today's Scores:</p>
#### <p style="text-align: center;"> π€ Machine   <span style="color: red;">''' + str(int(0)) + '''</span>   VS   <span style="color: red;">''' + str(int(0)) + '''</span>   Human π </p>'''
# scroe_human = ''' # Human: ''' + str(int(0))
# scroe_robot = ''' # Robot: ''' + str(int(0))
# tooltip=["Role", "Scores"],
return 0, 0, tot_scores
def reset_modules():
res_empty = {"original": "", "interpretation": []}
return res_empty, 0, 0, [], ""
# theme = gr.themes.Default(text_size=gr.themes.sizes.text_md).set(
# input_text_size="24px",
# )
with gr.Blocks(theme=gr.themes.Default(text_size=gr.themes.sizes.text_md)) as demo:
pre_load_1 = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
pre_load_2 = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment')
pre_load_3 = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english')
pre_load_4 = pipeline("text-classification", model="padmajabfrl/Gender-Classification")
num1 = gr.Number(value=0, container=False, show_label=False, visible=False)
num2 = gr.Number(value=0, container=False, show_label=False, visible=False)
num3 = gr.Number(value=0, container=False, show_label=False, visible=False)
num4 = gr.Number(value=0, container=False, show_label=False, visible=False)
with gr.Row():
with gr.Column():
placeholder = gr.Markdown(
''' ## Welcome to the Language Model Explanation Challenge! <br />
#### Language Models are powerful AI tools to understand and generate human language.<br />
#### However, they sometimes make mistakes... and it's hard to know why!<br />
#### Choose one of the tasks below ... and start to play!'''
)
with gr.Column():
# gr.Markdown(
# '''
# ### Built by [ADD GroNLP logo here]
# '''
# )
placeholder = gr.Markdown(
'''
Are *humans* or *machines* better at understanding language?<br />
→ Play a game against AI to find out!<br />
Does AI think like you or not at all?<br />
→ Check out the color highlighting to see which parts of the sentence are more important for the machine.<br />
Can you outsmart the AI?<br />
→ Try to write a text that will trick it into the wrong decision<br />
'''
)
gr.Image('logo.png', height=50, width=700, min_width=80, show_label=False, show_share_button=False, interactive=False, container=False)
with gr.Tab("Like or Dislike"):
text_en = gr.Textbox(label="", value="en", visible=False)
text_nl = gr.Textbox(label="", value="nl", visible=False)
lang_selected = gr.Textbox(label="", value="", visible=False)
num_selected_1 = gr.Number(value=0, container=False, show_label=False, visible=False)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
sample_button_en = gr.Button("Click to get a review in English.", size='sm')
# gr.Markdown(''' <p style="text-align: center;"> or </p> ''')
sample_button_nl = gr.Button("Click to get a review in Dutch.", size='sm')
input_text = gr.Textbox(label="Review:", value="HELLO! Hallo!", visible=False, container=False)
interpretation1 = gr.components.Interpretation(input_text)
slider_1_1 = gr.Slider(label="Your rating: Dislike(0) β> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
user_important = gr.Textbox(label="Which words are your guesses based on?", placeholder="Enter words that you think are important for the task")
with gr.Column(scale=1):
gr.Markdown(
''' ## Like or Dislike
You're given a short review of a movie, book or restaurant.
The goal of this game is to guess how *positive* the review is, from 0 (=extremely bad) to 10 (=fantastic).
* Step 1: Get an English or Dutch review and guess the corresponding score.
* Step 2: Check the score guessed by AI. Who gets the most correct answer wins.
* Step 3: Check the word highlighting to understand how AI made its decision.
'''
)
# tot_scores_1 = gr.Markdown(
# ''' #### <p style="text-align: center;"> Today's Scores:</p>
# #### <p style="text-align: center;"> π€ Machine   <span style="color: red;">''' + str(int(0)) + '''</span>   VS   <span style="color: red;">''' + str(int(0)) + '''</span>   Human π </p>'''
# )
tot_scores_1 = gr.Markdown(
''' #### <p style="text-align: center;"> Today's Scores:     π€ Machine   <span style="color: red;">''' + str(int(0)) + '''</span>   VS   <span style="color: red;">''' + str(int(0)) + '''</span>   Human π </p>'''
)
with gr.Row():
with gr.Column(scale=2):
chat_button_1 = gr.Button("Click to see AI's rating", size='sm')
slider_1_2 = gr.Slider(label="AI rating: Dislike(0) β> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
interpre_button = gr.Button("See how AI got its rating", size='sm')
placeholder_text = gr.Textbox(label="Red higlights: Positive / Blue higlights: Negative", value="HELLO! Hallo!", visible=False)
interpretation2 = gr.components.Interpretation(placeholder_text)
with gr.Column(scale=1):
chatbot1 = gr.Chatbot(height=230, min_width=50, container=False) # height=300
####################################################################################################
gr.Markdown(''' *** ''')
gr.Markdown(
''' # Now try with your own review!
'''
)
with gr.Row():
with gr.Column(scale=2):
text_written = gr.Textbox(label="Review: ", placeholder="Enter your own review about a movie/restaurant/book.", visible=True)
# image_1_3 = gr.Image('icon_user.png', height=80, width=80, min_width=80, show_label=False, show_share_button=False, interactive=False)
slider_1_3 = gr.Slider(label="Your rating: Dislike(0) β> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
lang_written = gr.Radio(["English", "Dutch"], label="Language:", info="In which language is the review written?")
chat_button_2 = gr.Button("Click to see AI's rating", size='sm')
placeholder_written_text = gr.Textbox(label="Red higlights: Positive / Blue higlights: Negative", value="HELLO! Hallo!", visible=False)
interpretation4 = gr.components.Interpretation(placeholder_written_text)
slider_1_4 = gr.Slider(label="AI rating: Dislike(0) β> Like(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
with gr.Column(scale=1):
chatbot2 = gr.Chatbot(height=350, min_width=50, container=False) # height=300
sample_button_en.click(read1, inputs=[text_en, num_selected_1], outputs=[interpretation1, lang_selected, num_selected_1])
sample_button_nl.click(read1, inputs=[text_nl, num_selected_1], outputs=[interpretation1, lang_selected, num_selected_1])
num_selected_1.change(reset_modules, outputs=[interpretation2, slider_1_1, slider_1_2, chatbot1, user_important])
chat_button_1.click(func1, inputs=[lang_selected, num_selected_1, slider_1_1, num1, num2, user_important], outputs=[slider_1_2, chatbot1, num1, num2, tot_scores_1])
interpre_button.click(interpre1, inputs=[lang_selected, num_selected_1], outputs=[interpretation2])
chat_button_2.click(func1_written, inputs=[text_written, slider_1_3, lang_written], outputs=[interpretation4, slider_1_4, chatbot2])
# with gr.Tab("Human or Machine"):
# with gr.Row():
# text_input_2 = gr.Textbox()
# text_output_2 = gr.Label()
# text_button_2 = gr.Button("Check")
with gr.Tab("Male or Female"):
num_selected_3 = gr.Number(value=0, container=False, show_label=False, visible=False)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
# gr.Markdown(''' <p style="text-align: center;"> or </p> ''')
sample_button_en_3 = gr.Button("Click to get a sentence", size='sm')
input_text_mf = gr.Textbox(label="Sentence:", value="HELLO! Hallo!", visible=False, container=False)
interpretation_mf_1 = gr.components.Interpretation(input_text_mf)
slider_3_1 = gr.Slider(label="Your guess of author gender: Male(0) ββ> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
user_important_mf = gr.Textbox(label="Which words are your guesses based on?", placeholder="Enter words that you think are important for the task")
with gr.Column(scale=1):
gr.Markdown(
''' ## Male or Female
You're given a sentence written by a person.
The goal of the game is to guess the gender of that person, from 0 (=Male) to 10 (=Female).
- Step 1: Get a sentence and guess the gender of its author.
- Step 2: Check the gender guessed by AI. Who gets the most correct answer wins.
- Step 3: Check the word highlighting to understand how AI made its decision.
'''
)
# tot_scores_2 = gr.Markdown(
# ''' #### <p style="text-align: center;"> Today's Scores:</p>
# #### <p style="text-align: center;"> π€ Machine   <span style="color: red;">''' + str(int(0)) + '''</span>   VS   <span style="color: red;">''' + str(int(0)) + '''</span>   Human π </p>'''
# )
tot_scores_2 = gr.Markdown(
''' #### <p style="text-align: center;"> Today's Scores:     π€ Machine   <span style="color: red;">''' + str(int(0)) + '''</span>   VS   <span style="color: red;">''' + str(int(0)) + '''</span>   Human π </p>'''
)
with gr.Row():
with gr.Column(scale=2):
chat_button_mf = gr.Button("Click to see AI's guess", size='sm')
slider_3_2 = gr.Slider(label="AI guess on author gender: Male(0) ββ> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
interpre_button_mf = gr.Button("See how AI made its guess", size='sm')
placeholder_text_mf = gr.Textbox(label="Red higlights: Female / Blue higlights: Male", value="HELLO! Hallo!", visible=False)
interpretation_mf_2 = gr.components.Interpretation(placeholder_text_mf)
with gr.Column(scale=1):
chatbot_mf_1 = gr.Chatbot(height=230, min_width=50, container=False)
####################################################################################################
gr.Markdown(''' *** ''')
gr.Markdown(
''' # Now try with your own sentence!
'''
)
with gr.Row():
with gr.Column(scale=2):
text_written_mf = gr.Textbox(label="Sentence: ", placeholder="Enter a sentence.", visible=True)
slider_3_3 = gr.Slider(label="Your guess of author gender: Male(0) ββ> Female(10)", maximum=10, step=1, container=True, min_width=200, height=80, show_label=True, interactive=True)
chat_button_mf_2 = gr.Button("Click to see AI's guess", size='sm')
placeholder_written_text_mf = gr.Textbox(label="Red higlights: Female / Blue higlights: Male", value="HELLO! Hallo!", visible=False)
interpretation_mf_4 = gr.components.Interpretation(placeholder_written_text_mf)
slider_3_4 = gr.Slider(label="AI guess on author gender: Male(0) ββ> Female(10)", maximum=10, container=True, min_width=200, height=80, show_label=True, interactive=True)
with gr.Column(scale=1):
chatbot_mf_2 = gr.Chatbot(height=350, min_width=50, container=False) # height=300
sample_button_en_3.click(read3, inputs=[num_selected_3], outputs=[interpretation_mf_1, num_selected_3])
num_selected_3.change(reset_modules, outputs=[interpretation_mf_2, slider_3_1, slider_3_2, chatbot_mf_1, user_important_mf])
chat_button_mf.click(func3, inputs=[num_selected_3, slider_3_1, num3, num4, user_important_mf], outputs=[slider_3_2, chatbot_mf_1, num3, num4, tot_scores_2])
interpre_button_mf.click(interpre3, inputs=[num_selected_3], outputs=[interpretation_mf_2])
chat_button_mf_2.click(func3_written, inputs=[text_written_mf, slider_3_3], outputs=[interpretation_mf_4, slider_3_4, chatbot_mf_2])
if __name__ == "__main__":
demo.launch()
|