File size: 7,089 Bytes
e06414b
 
 
 
 
 
 
7b8298a
 
3fc50a0
7b8298a
d4c90c2
d3ab549
 
 
 
 
 
 
 
e06414b
d3ab549
 
 
 
 
 
 
 
 
 
e06414b
 
d3ab549
e06414b
d3ab549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e06414b
d3ab549
e06414b
 
 
 
 
 
 
 
 
 
d3ab549
e06414b
 
 
 
 
d3ab549
e06414b
 
 
d3ab549
e06414b
d3ab549
 
 
 
 
 
 
 
 
 
 
e06414b
 
 
 
d3ab549
 
 
 
e06414b
 
d3ab549
 
 
 
 
 
e06414b
d3ab549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e06414b
 
 
d3ab549
e06414b
 
 
 
 
 
 
 
 
 
8984d2a
d3ab549
 
 
7b8298a
c77f4ba
d3ab549
7b8298a
d3ab549
 
 
e06414b
d3ab549
7b8298a
d3ab549
 
e06414b
 
 
7b8298a
 
 
 
 
 
 
 
 
 
 
 
 
8984d2a
7b8298a
 
 
 
d3ab549
7b8298a
e06414b
d3ab549
e06414b
d3ab549
 
7b8298a
e06414b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Importing the required libraries
import streamlit as st
import numpy as np
import librosa
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Dropout
import io 
import soundfile as sf
from st_audiorec import st_audiorec
from scipy.io.wavfile import write, read as wav_read

# Define the target speakers in a list.
# ALSO THESE ARE FILES THAT WERE NOT USED TO TEST NOR TRAIN THE MODEL
# I PULLED THEM OUT JUST SO WE CAN SEE HOW WELL THE MODEL PERFORMS ON 
# UNSEEN AUDIO FILES. 
# 
# There is 4 more for each that still havent been added
# here but i already tested it in the notebook. 98% Accuracy

target_dictionary = {
    0 : ["p225", 'AUDIO_FILES/p225_358.wav'], # Label, Speaker_id, Wav file
    1 : ["p226", 'AUDIO_FILES/p226_366.wav'], 
    2 : ["p228", 'AUDIO_FILES/p228_367.wav'], 
    3 : ["p236", 'AUDIO_FILES/p236_500.wav'], 
    4 : ["p237", 'AUDIO_FILES/p237_348.wav'], 
    5 : ["p241", 'AUDIO_FILES/p241_370.wav'], 
    6 : ["p249", 'AUDIO_FILES/p249_351.wav'], 
    7 : ["p257", 'AUDIO_FILES/p257_430.wav'], 
    8 : ["p304", 'AUDIO_FILES/p304_420.wav'], 
    9 : ["p326", 'AUDIO_FILES/p326_400.wav']
}

# Function to extract features from audio file... (same function from notebook)
def extract_feature(file_name):
    """ Extract features from audio file
    Args:
      file_name (str): Path to audio file
    return:
      np.array: Feature vector
    """
    X, sample_rate = librosa.core.load(file_name) # load audio file
    result = np.array([]) # array that stores features
    mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0) # calc mel spectogram
    result = np.hstack((result, mel)) # insert the mel spect into results arr
    return result # return the feature vector

# Function to classify gender (NOT MY CODE)

###################################################
# shout out: https://github.com/https://github.com/JoyBis48
# Link to Hugging Face Space: https://huggingface.co/spaces/Cosmos48/Gender-Voice-Recognition

# Function to convert audio to spectrogram image. Just so u can see it 2.
def audio_to_spectrogram(file_path):
    y, sr = librosa.load(file_path)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, hop_length=512)
    mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
    plt.figure(figsize=(4, 4))
    plt.axis('off')
    plt.imshow(mel_spec_db, aspect='auto', origin='lower')
    plt.tight_layout()
    plt.savefig("spectrogram.png")
    plt.close()
    
def classify_gender(file_path):
    features = extract_feature(file_path).reshape(1, -1)
    male_prob = gender_model.predict(features, verbose=0)[0][0]
    female_prob = 1 - male_prob
    gender = "male" if male_prob > female_prob else "female"
    probability = "{:.2f}".format(male_prob) if gender == "male" else "{:.2f}".format(female_prob)
    return gender, probability

# Function to create the gender classification model
def create_model(vector_length=128):
    model = Sequential([
    Dense(256, input_shape=(vector_length,), activation='relu'),
    Dropout(0.3),
    Dense(256, activation='relu'),
    Dropout(0.3),
    Dense(128, activation='relu'),
    Dropout(0.3),
    Dense(128, activation='relu'),
    Dropout(0.3),
    Dense(64, activation='relu'),
    Dropout(0.3),
    Dense(1, activation='sigmoid')
    ])
    model.compile(loss='binary_crossentropy', metrics=['accuracy'], optimizer='adam')
    return model

# Load the pre-trained model
gender_model = create_model()

# The saved_model.h5 is the pretrained model that was used.
gender_model.load_weights("NEW_MODELS/saved_model.h5")

####################################################

# Function to classify the speaker
def classify_speaker(file_path):
    # Extract features from the user recording
    features = extract_feature(file_path).reshape(1, -1)  # Reshaping to match the model input

    # Predict the probabilities for each of the 10 speakers
    speaker_probs = model.predict(features, verbose=0)[0]

    # Identify the most likely speaker by finding the index of the highest probability
    most_likely_speaker = np.argmax(speaker_probs)  
    probability = speaker_probs[most_likely_speaker]  # Probability of the most likely speaker

    # Map the index to the speaker label
    speaker = f"Speaker {target_dictionary[most_likely_speaker][0]}"

    # For users to hear what the voice sounds like if they use their actual voice.
    wav_file = target_dictionary[most_likely_speaker][1]
    
    # Format the probability for better readability
    probability = "{:.2f}".format(probability)

    return speaker, probability, wav_file

# Load Speaker Reco Model
model = load_model('NEW_MODELS/CUR_speaker_model.h5')

# Streamlit app
st.title("Voice Correlation Recognition")
st.write("This application is still undergoing fixes & updates ;-;")

# Option to upload a file
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])

if uploaded_file is not None:
    with open("uploaded_audio.wav", "wb") as f:
        f.write(uploaded_file.getbuffer())
    st.audio(uploaded_file, format='audio/wav')

    if st.button("Submit"):
        try:
            audio_to_spectrogram("uploaded_audio.wav")
            st.image("spectrogram.png", caption="Mel Spectrogram of the uploaded audio file", use_container_width=True)
            speaker, probability, _ = classify_speaker("uploaded_audio.wav")
            gender, gen_probability = classify_gender("uploaded_audio.wav")
            
            # What's the gender of speaker?
            st.write(f"Predicted Gender: {gender}")

            # What's the shot of speaker being a male or female
            st.write(f"Gender Probability: {gen_probability}")

            # Which speaker is it?
            st.write(f"Predicted Speaker: {speaker}")

            # What's the chances of being the speaker?
            st.write(f"Speaker Probability: {probability}")
            
        except Exception as e:
            st.error(f"Error occurred: {e}")

# Record audio with streamlit_audio_recorder
recorded_audio = st_audiorec()

if recorded_audio:
    # Save the audio as a .wav file
    with open("recorded_audio.wav", "wb") as f:
        f.write(recorded_audio)

    st.write(f"Audio recorded and saved to recorded_audio.wav")  # Show message
    st.audio("recorded_audio.wav")  # Show the audio file

    # Process the recorded audio
    audio_to_spectrogram("recorded_audio.wav")
    st.image("spectrogram.png", caption="Mel Spectrogram of the uploaded audio file", use_container_width=True)

    # Classify the speaker and gender
    speaker, probability, wav_file = classify_speaker("recorded_audio.wav")
    gender, gen_probability = classify_gender("recorded_audio.wav")
    
    # Display results
    st.write(f"Predicted Gender: {gender}")
    st.write(f"Gender Probability: {gen_probability}")
    st.write(f"Predicted Speaker: {speaker}")
    st.write(f"Speaker Probability: {probability}")
    
    # Display the wav file of the predicted speaker
    st.audio(wav_file)