File size: 4,727 Bytes
3f78c39
d9a0196
 
7a6824f
d9a0196
 
 
 
 
 
 
 
 
7a6824f
 
 
 
d9a0196
 
 
 
 
 
 
 
64be49e
 
 
32627c4
704cc76
13dbab7
 
 
64be49e
d9a0196
 
 
64be49e
5dfc352
d9a0196
 
 
 
 
 
 
 
 
7a6824f
d9a0196
7a6824f
d9a0196
 
64be49e
7a6824f
 
64be49e
d9a0196
64be49e
13dbab7
 
64be49e
7a6824f
 
64be49e
 
 
7a6824f
d9a0196
 
 
 
 
 
7a6824f
d9a0196
 
 
7a6824f
 
 
d9a0196
 
7a6824f
64be49e
 
7a6824f
 
 
 
d9a0196
 
 
 
 
7a6824f
d9a0196
 
 
 
 
7a6824f
 
d9a0196
64be49e
d9a0196
 
 
 
 
4112e9f
7a6824f
d9a0196
 
 
 
 
 
 
 
 
7a6824f
d9a0196
 
 
7a6824f
d9a0196
 
 
7a6824f
64be49e
 
d9a0196
4112e9f
 
 
d9a0196
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
""" TypeGPT
@author: NiansuhAI
@email: niansuhtech@gmail.com

"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()





# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('API_KEY')  # Replace with your token
)

# Create supported models
model_links = {
    "GPT-4o": "mistralai/Mistral-Nemo-Instruct-2407",
    "GPT-4": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "GPT-3.5": "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
    "Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
    "Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
    "Gemini-1.3-2b-it": "google/gemma-1.1-2b-it",
    "Gemini-1.3-7b-it": "google/gemma-1.1-7b-it",
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1",
}

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None
    
# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Выбрать модель GPT", models)

#Add reset button to clear conversation
st.sidebar.button('Новый чат', on_click=reset_conversation) #Reset button

# Create a temperature slider
temp_values = st.sidebar.slider('Температура GPT-ChatBot', 0.0, 1.0, (0.5))
st.sidebar.markdown("Температура в GPT-ChatBot влияет на качество и связность генерируемого текста.")
st.sidebar.markdown("**Для оптимального результата рекомендуем выбирать температуру в диапазоне от 0,5 до 0,7**.")                  


# Create model description
st.sidebar.markdown("*Созданный контент может быть неточным.*")
st.sidebar.markdown("\n Наш сайт: [GPT-ChatBot.ru](https://gpt-chatbot.ru/).")


if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'[GPT-ChatBot.ru](https://gpt-chatbot.ru/) с моделью {selected_model}')
# st.title(f'GPT-ChatBot сейчас использует {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])



# Accept user input
if prompt := st.chat_input(f"Привет. Я {selected_model}. Как я могу вам помочь сегодня?"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,#0.5,
                stream=True,
                max_tokens=3000,
            )
    
            response = st.write_stream(stream)

        except Exception as e:
            # st.empty()
            response = "Похоже, чат перегружен!\
                    \n Повторите свой запрос позже:( "
            st.write(response)

            

    st.session_state.messages.append({"role": "assistant", "content": response})