File size: 49,038 Bytes
b354d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dbb7c6
 
b354d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.

import random
import argparse
from concurrent.futures import ProcessPoolExecutor
import os
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings
import glob
import re
from pathlib import Path
from PIL import Image
from pydub import AudioSegment
from pydub.effects import normalize
from datetime import datetime

import json
import shutil
import taglib
import torch
import torchaudio
import gradio as gr
import numpy as np
import typing as tp

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen
from audiocraft.utils import ui
import subprocess, random, string

theme = gr.themes.Base(
    primary_hue="lime",
    secondary_hue="lime",
    neutral_hue="neutral",
).set(
    button_primary_background_fill_hover='*primary_500',
    button_primary_background_fill_hover_dark='*primary_500',
    button_secondary_background_fill_hover='*primary_500',
    button_secondary_background_fill_hover_dark='*primary_500'
)

MODEL = None  # Last used model
MODELS = None
IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
MOVE_TO_CPU = False
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

def resize_video(input_path, output_path, target_width, target_height):
    ffmpeg_cmd = [
        'ffmpeg',
        '-y',
        '-i', input_path,
        '-vf', f'scale={target_width}:{target_height}',
        '-c:a', 'copy',
        output_path
    ]
    subprocess.run(ffmpeg_cmd)

def _call_nostderr(*args, **kwargs):
    # Avoid ffmpeg vomitting on the logs.
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)


sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break


file_cleaner = FileCleaner()

def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        height = kwargs.pop('height')
        width = kwargs.pop('width')
        if height < 256:
            height = 256
        if width < 256:
            width = 256
        waveform_video = gr.make_waveform(*args, **kwargs)
        out = f"{generate_random_string(12)}.mp4"
        image = kwargs.get('bg_image', None)
        if image is None:
            resize_video(waveform_video, out, 900, 300)
        else:
            resize_video(waveform_video, out, width, height)
        print("Make a video took", time.time() - be)
        return out


def load_model(version='melody', custom_model=None, base_model='medium'):
    global MODEL, MODELS
    print("Loading model", version)
    if MODELS is None:
        if version == 'custom':
            MODEL = MusicGen.get_pretrained(base_model)
            MODEL.lm.load_state_dict(torch.load(custom_model))
        else:
            MODEL = MusicGen.get_pretrained(version)
        return
    else:
        t1 = time.monotonic()
        if MODEL is not None:
            MODEL.to('cpu') # move to cache
            print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
            t1 = time.monotonic()
        if version != 'custom' and MODELS.get(version) is None:
            print("Loading model %s from disk" % version)
            result = MusicGen.get_pretrained(version)
            MODELS[version] = result
            print("Model loaded in %.2fs" % (time.monotonic() - t1))
            MODEL = result
            return
        result = MODELS[version].to('cuda')
        print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
        MODEL = result

def get_audio_info(audio_path):
    if audio_path is not None:
        with taglib.File(audio_path.name, save_on_exit=False) as song:
            json_string = song.tags['COMMENT'][0]
            data = json.loads(json_string)
            prompts = str("Prompts: " + data['texts'])
            duration = str("Duration: " + data['duration'])
            overlap = str("Overlap: " + data['overlap'])
            seed = str("Seed: " + data['seed'])
            audio_mode = str("Audio Mode: " + data['audio_mode'])
            input_length = str("Input Length: " + data['input_length'])
            channel = str("Channel: " + data['channel'])
            sr_select = str("Sample Rate: " + data['sr_select'])
            model = str("Model: " + data['model'])
            topk = str("Topk: " + data['topk'])
            topp = str("Topp: " + data['topp'])
            temperature = str("Temperature: " + data['temperature'])
            cfg_coef = str("Classifier Free Guidance: " + data['cfg_coef'])
            info = str(prompts + "\n" + duration + "\n" + overlap + "\n" + seed + "\n" + audio_mode + "\n" + input_length + "\n" + channel + "\n" + sr_select + "\n" + model + "\n" + topk + "\n" + topp + "\n" + temperature + "\n" + cfg_coef)
            return info
    else:
        return None

def info_to_params(audio_path):
    if audio_path is not None:
        with taglib.File(audio_path.name, save_on_exit=False) as song:
            json_string = song.tags['COMMENT'][0]
            data = json.loads(json_string)
            s = data['texts']
            s = re.findall(r"'(.*?)'", s)
            text = []
            repeat = []
            i = 0
            for elem in s:
                if elem.strip():
                    if i == 0 or elem != s[i-1]:
                        text.append(elem)
                        repeat.append(1)
                    else:
                        repeat[-1] += 1
                i += 1
            text.extend([""] * (10 - len(text)))
            repeat.extend([1] * (10 - len(repeat)))
            unique_prompts = len([t for t in text if t])
            return data['model'], unique_prompts, text[0], text[1], text[2], text[3], text[4], text[5], text[6], text[7], text[8], text[9], repeat[0], repeat[1], repeat[2], repeat[3], repeat[4], repeat[5], repeat[6], repeat[7], repeat[8], repeat[9], data['audio_mode'], int(data['duration']), float(data['topk']), float(data['topp']), float(data['temperature']), float(data['cfg_coef']), int(data['seed']), int(data['overlap']), data['channel'], data['sr_select']
    else:
        return "large", 1, "", "", "", "", "", "", "", "", "", "", 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, "sample", 10, 250, 0, 1.0, 5.0, -1, 12, "stereo", "48000"


def make_pseudo_stereo (filename, sr_select, pan, delay):
    if pan:
        temp = AudioSegment.from_wav(filename)
        if sr_select != "32000":
            temp = temp.set_frame_rate(int(sr_select))
        left = temp.pan(-0.5) - 5
        right = temp.pan(0.6) - 5
        temp = left.overlay(right, position=5)
        temp.export(filename, format="wav")
    if delay:     
        waveform, sample_rate = torchaudio.load(filename) # load mono WAV file
        delay_seconds = 0.01 # set delay 10ms
        delay_samples = int(delay_seconds * sample_rate) # Calculating delay value in number of samples
        stereo_waveform = torch.stack([waveform[0], torch.cat((torch.zeros(delay_samples), waveform[0][:-delay_samples]))]) # Generate a stereo file with original mono audio and delayed version
        torchaudio.save(filename, stereo_waveform, sample_rate)
    return


def normalize_audio(audio_data):
    audio_data = audio_data.astype(np.float32)
    max_value = np.max(np.abs(audio_data))
    audio_data /= max_value
    return audio_data


def _do_predictions(texts, melodies, sample, trim_start, trim_end, duration, image, height, width, background, bar1, bar2, channel, sr_select, progress=False, **gen_kwargs):
    maximum_size = 29.5
    cut_size = 0
    input_length = 0
    sampleP = None
    if sample is not None:
        globalSR, sampleM = sample[0], sample[1]
        sampleM = normalize_audio(sampleM)
        sampleM = torch.from_numpy(sampleM).t()
        if sampleM.dim() == 1:
            sampleM = sampleM.unsqueeze(0)
        sample_length = sampleM.shape[sampleM.dim() - 1] / globalSR
        if trim_start >= sample_length:
            trim_start = sample_length - 0.5
        if trim_end >= sample_length:
            trim_end = sample_length - 0.5
        if trim_start + trim_end >= sample_length:
            tmp = sample_length - 0.5
            trim_start = tmp / 2
            trim_end = tmp / 2
        sampleM = sampleM[..., int(globalSR * trim_start):int(globalSR * (sample_length - trim_end))]
        sample_length = sample_length - (trim_start + trim_end)
        if sample_length > maximum_size:
            cut_size = sample_length - maximum_size
            sampleP = sampleM[..., :int(globalSR * cut_size)]
            sampleM = sampleM[..., int(globalSR * cut_size):]
        if sample_length >= duration:
            duration = sample_length + 0.5
        input_length = sample_length
    global MODEL
    MODEL.set_generation_params(duration=(duration - cut_size), **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies], [None if sample is None else (sample[0], sample[1].shape)])
    be = time.time()
    processed_melodies = []
    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)
    
    if sample is not None:
        if sampleP is None:
            outputs = MODEL.generate_continuation(
                prompt=sampleM,
                prompt_sample_rate=globalSR,
                descriptions=texts,
                progress=progress,
            )
        else:
            if sampleP.dim() > 1:
                sampleP = convert_audio(sampleP, globalSR, target_sr, target_ac)
            sampleP = sampleP.to(MODEL.device).float().unsqueeze(0)
            outputs = MODEL.generate_continuation(
                prompt=sampleM,
                prompt_sample_rate=globalSR,
                descriptions=texts,
                progress=progress,
            )
            outputs = torch.cat([sampleP, outputs], 2)
            
    elif any(m is not None for m in processed_melodies):
        outputs = MODEL.generate_with_chroma(
            descriptions=texts,
            melody_wavs=processed_melodies,
            melody_sample_rate=target_sr,
            progress=progress,
        )
    else:
        outputs = MODEL.generate(texts, progress=progress)

    outputs = outputs.detach().cpu().float()
    backups = outputs
    if channel == "stereo":
        outputs = convert_audio(outputs, target_sr, int(sr_select), 2)
    elif channel == "mono" and sr_select != "32000":
        outputs = convert_audio(outputs, target_sr, int(sr_select), 1)
    out_files = []
    out_audios = []
    out_backup = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, (MODEL.sample_rate if channel == "stereo effect" else int(sr_select)), strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)

            if channel == "stereo effect":
                make_pseudo_stereo(file.name, sr_select, pan=True, delay=True);

            out_audios.append(file.name)
            out_files.append(pool.submit(make_waveform, file.name, bg_image=image, bg_color=background, bars_color=(bar1, bar2), fg_alpha=1.0, bar_count=75, height=height, width=width))
            file_cleaner.add(file.name)
    for backup in backups:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, backup, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_backup.append(file.name)
            file_cleaner.add(file.name)
    res = [out_file.result() for out_file in out_files]
    res_audio = out_audios
    res_backup = out_backup
    for file in res:
        file_cleaner.add(file)
    print("batch finished", len(texts), time.time() - be)
    print("Tempfiles currently stored: ", len(file_cleaner.files))
    if MOVE_TO_CPU:
        MODEL.to('cpu')
    if UNLOAD_MODEL:
        MODEL = None
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    return res, res_audio, res_backup, input_length


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('melody')
    res = _do_predictions(texts, melodies, BATCHED_DURATION)
    return [res]


def add_tags(filename, tags): 
    json_string = None

    data = {
        "texts": tags[0],
        "duration": tags[1],
        "overlap": tags[2],
        "seed": tags[3],
        "audio_mode": tags[4],
        "input_length": tags[5],
        "channel": tags[6],
        "sr_select": tags[7],
        "model": tags[8],
        "topk": tags[9],  
        "topp": tags[10],
        "temperature": tags[11],
        "cfg_coef": tags[12]
        }

    json_string = json.dumps(data)

    if os.path.exists(filename):
        with taglib.File(filename, save_on_exit=True) as song:
            song.tags = {'COMMENT': json_string }
    return;


def save_outputs(mp4, wav_tmp, tags):
    # mp4: .mp4 file name in root running folder of app.py    
    # wav_tmp: temporary wav file located in %TEMP% folder
    # seed - used seed 
    # exanple BgnJtr4Pn1AJ.mp4,  C:\Users\Alex\AppData\Local\Temp\tmp4ermrebs.wav,  195123182343465
    # procedure read generated .mp4 and wav files, rename it by using seed as name, 
    # and will store it to ./output/today_date/wav and  ./output/today_date/mp4 folders. 
    # if file with same seed number already exist its make postfix in name like seed(n) 
    # where is n - consiqunce number 1-2-3-4 and so on
    # then we store generated mp4 and wav into destination folders.     

    current_date = datetime.now().strftime("%Y%m%d")
    wav_directory = os.path.join(os.getcwd(), 'output', current_date,'wav')
    mp4_directory = os.path.join(os.getcwd(), 'output', current_date,'mp4')
    os.makedirs(wav_directory, exist_ok=True)
    os.makedirs(mp4_directory, exist_ok=True)

    filename = str(tags[3]) + '.wav'
    target = os.path.join(wav_directory, filename)
    counter = 1
    while os.path.exists(target):
        filename = str(tags[3]) + f'({counter})' + '.wav'
        target = os.path.join(wav_directory, filename)
        counter += 1

    shutil.copyfile(wav_tmp, target); # make copy of original file
    add_tags(target, tags);
    
    wav_target=target;
    target=target.replace('wav', 'mp4');    
    mp4_target=target;
    
    mp4=r'./' +mp4;    
    shutil.copyfile(mp4, target); # make copy of original file  
    add_tags(target, tags);
    return wav_target, mp4_target;


def clear_cash():
    # delete all temporary files genegated my system
    current_date = datetime.now().date()
    current_directory = os.getcwd()
    files = glob.glob(os.path.join(current_directory, '*.mp4'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)

    temp_directory = os.environ.get('TEMP')
    files = glob.glob(os.path.join(temp_directory, 'tmp*.mp4'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)
   
    files = glob.glob(os.path.join(temp_directory, 'tmp*.wav'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)

    files = glob.glob(os.path.join(temp_directory, 'tmp*.png'))
    for file in files:
        creation_date = datetime.fromtimestamp(os.path.getctime(file)).date()
        if creation_date == current_date:
            os.remove(file)
    return


def predict_full(model, custom_model, base_model, prompt_amount, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, audio, mode, trim_start, trim_end, duration, topk, topp, temperature, cfg_coef, seed, overlap, image, height, width, background, bar1, bar2, channel, sr_select, progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False

    #clear_cash();

    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")
    
    if trim_start < 0:
        trim_start = 0
    if trim_end < 0:
        trim_end = 0

    topk = int(topk)
    if MODEL is None or MODEL.name != model:
        load_model(model, custom_model, base_model)
    else:
        if MOVE_TO_CPU:
            MODEL.to('cuda')

    if seed < 0:
        seed = random.randint(0, 0xffff_ffff_ffff)
    torch.manual_seed(seed)
    predict_full.last_upd = time.monotonic()
    def _progress(generated, to_generate):
        if time.monotonic() - predict_full.last_upd > 1:
            progress((generated, to_generate))
            predict_full.last_upd = time.monotonic()
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    audio_mode = "none"
    melody = None
    sample = None
    if audio:
      audio_mode = mode
      if mode == "sample":
          sample = audio
      elif mode == "melody":
          melody = audio
    
    text_cat = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9]
    drag_cat = [d0, d1, d2, d3, d4, d5, d6, d7, d8, d9]
    texts = []
    ind = 0
    ind2 = 0
    while ind < prompt_amount:
        for ind2 in range(int(drag_cat[ind])):
            texts.append(text_cat[ind])
        ind2 = 0
        ind = ind + 1

    outs, outs_audio, outs_backup, input_length = _do_predictions(
        [texts], [melody], sample, trim_start, trim_end, duration, image, height, width, background, bar1, bar2, channel, sr_select, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, extend_stride=MODEL.max_duration-overlap)
    tags = [str(texts), str(duration), str(overlap), str(seed), str(audio_mode), str(input_length), str(channel), str(sr_select), str(model), str(topk), str(topp), str(temperature), str(cfg_coef)]
    wav_target, mp4_target = save_outputs(outs[0], outs_audio[0], tags);
    # Removes the temporary files.
    for out in outs:
        os.remove(out)
    for out in outs_audio:
        os.remove(out)

    return mp4_target, wav_target, outs_backup[0], [mp4_target, wav_target], seed

max_textboxes = 10

def get_available_models():
    return sorted([re.sub('.pt$', '', item.name) for item in list(Path('models/').glob('*')) if item.name.endswith('.pt')])

def toggle_audio_src(choice):
    if choice == "mic":
        return gr.update(source="microphone", value=None, label="Microphone")
    else:
        return gr.update(source="upload", value=None, label="File")

def ui_full(launch_kwargs):
    with gr.Blocks(title='MusicGen+', theme=theme) as interface:
        gr.Markdown(
            """
            # MusicGen+ V1.2.7

            ## An All-in-One MusicGen WebUI

            ## **NEW VERSION IS OUT:** https://huggingface.co/spaces/GrandaddyShmax/AudioCraft_Plus

            #### **Disclaimer:** This will not run on CPU only. Its best to clone this App and run on GPU instance!

            **Alternatively**, you can run this for free on a google colab:  
            https://colab.research.google.com/github/camenduru/MusicGen-colab/blob/main/MusicGen_ClownOfMadness_plus_colab.ipynb
            
            **Or**, run this locally on your PC:  
            https://github.com/GrandaddyShmax/audiocraft_plus/tree/plus

            Thanks to: facebookresearch, Camenduru, rkfg, oobabooga, AlexHK and GrandaddyShmax
            """
        )
        with gr.Tab("Text2Audio"):
            with gr.Row():
                with gr.Column():
                    with gr.Tab("Generation"):
                        with gr.Row():
                            s = gr.Slider(1, max_textboxes, value=1, step=1, label="Prompt Segments:")
                        with gr.Column():
                            textboxes = []
                            prompts = []
                            repeats = []
                            with gr.Row():
                                text0 = gr.Text(label="Input Text", interactive=True, scale=3)
                                prompts.append(text0)
                                drag0 = gr.Number(label="Repeat", value=1, interactive=True, scale=1)
                                repeats.append(drag0)
                            for i in range(max_textboxes):
                                with gr.Row(visible=False) as t:
                                    text = gr.Text(label="Input Text", interactive=True, scale=3)
                                    repeat = gr.Number(label="Repeat", minimum=1, value=1, interactive=True, scale=1)
                                textboxes.append(t)
                                prompts.append(text)
                                repeats.append(repeat)
                        with gr.Row():
                            duration = gr.Slider(minimum=1, maximum=300, value=10, step=1, label="Duration", interactive=True)
                        with gr.Row():
                            overlap = gr.Slider(minimum=1, maximum=29, value=12, step=1, label="Overlap", interactive=True)
                        with gr.Row():
                            seed = gr.Number(label="Seed", value=-1, scale=4, precision=0, interactive=True)
                            gr.Button('\U0001f3b2\ufe0f', scale=1).style(full_width=False).click(fn=lambda: -1, outputs=[seed], queue=False)
                            reuse_seed = gr.Button('\u267b\ufe0f', scale=1).style(full_width=False)
                    with gr.Tab("Audio"):
                        with gr.Row():
                            with gr.Column():
                                input_type = gr.Radio(["file", "mic"], value="file", label="Input Type (optional)", interactive=True)
                                mode = gr.Radio(["melody", "sample"], label="Input Audio Mode (optional)", value="sample", interactive=True)
                                with gr.Row():
                                    trim_start = gr.Number(label="Trim Start", value=0, interactive=True)
                                    trim_end = gr.Number(label="Trim End", value=0, interactive=True)
                            audio = gr.Audio(source="upload", type="numpy", label="Input Audio (optional)", interactive=True)
                    with gr.Tab("Customization"):
                        with gr.Row():
                            with gr.Column():
                                background = gr.ColorPicker(value="#0f0f0f", label="background color", interactive=True, scale=0)
                                bar1 = gr.ColorPicker(value="#84cc16", label="bar color start", interactive=True, scale=0)
                                bar2 = gr.ColorPicker(value="#10b981", label="bar color end", interactive=True, scale=0)
                            with gr.Column():
                                image = gr.Image(label="Background Image", type="filepath", interactive=True, scale=4)
                                with gr.Row():
                                    height = gr.Number(label="Height", value=512, interactive=True)
                                    width = gr.Number(label="Width", value=768, interactive=True)
                    with gr.Tab("Settings"):
                        with gr.Row():
                            channel = gr.Radio(["mono", "stereo", "stereo effect"], label="Output Audio Channels", value="stereo", interactive=True, scale=1)
                            sr_select = gr.Dropdown(["11025", "22050", "24000", "32000", "44100", "48000"], label="Output Audio Sample Rate", value="48000", interactive=True)
                        with gr.Row():
                            model = gr.Radio(["melody", "small", "medium", "large", "custom"], label="Model", value="large", interactive=True, scale=1)
                            with gr.Column():
                                dropdown = gr.Dropdown(choices=get_available_models(), value=("No models found" if len(get_available_models()) < 1 else get_available_models()[0]), label='Custom Model (models folder)', elem_classes='slim-dropdown', interactive=True)
                                ui.create_refresh_button(dropdown, lambda: None, lambda: {'choices': get_available_models()}, 'refresh-button')
                                basemodel = gr.Radio(["small", "medium", "large"], label="Base Model", value="medium", interactive=True, scale=1)
                        with gr.Row():
                            topk = gr.Number(label="Top-k", value=250, interactive=True)
                            topp = gr.Number(label="Top-p", value=0, interactive=True)
                            temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
                            cfg_coef = gr.Number(label="Classifier Free Guidance", value=5.0, interactive=True)
                    with gr.Row():
                        submit = gr.Button("Generate", variant="primary")
                        # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                        _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                with gr.Column() as c:
                    with gr.Tab("Output"):
                        output = gr.Video(label="Generated Music", scale=0)
                        with gr.Row():
                            audio_only = gr.Audio(type="numpy", label="Audio Only", interactive=False)
                            backup_only = gr.Audio(type="numpy", label="Backup Audio", interactive=False, visible=False)
                            send_audio = gr.Button("Send to Input Audio")
                        seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
                        download = gr.File(label="Generated Files", interactive=False)
                    with gr.Tab("Wiki"):
                        gr.Markdown(
                            """
                            - **[Generate (button)]:**  
                            Generates the music with the given settings and prompts.

                            - **[Interrupt (button)]:**  
                            Stops the music generation as soon as it can, providing an incomplete output.

                            ---

                            ### Generation Tab:

                            #### Multi-Prompt: 
                            
                            This feature allows you to control the music, adding variation to different time segments.  
                            You have up to 10 prompt segments. the first prompt will always be 30s long  
                            the other prompts will be [30s - overlap].  
                            for example if the overlap is 10s, each prompt segment will be 20s.

                            - **[Prompt Segments (number)]:**  
                            Amount of unique prompt to generate throughout the music generation.

                            - **[Prompt/Input Text (prompt)]:**  
                            Here describe the music you wish the model to generate.

                            - **[Repeat (number)]:**  
                            Write how many times this prompt will repeat (instead of wasting another prompt segment on the same prompt).

                            - **[Duration (number)]:**  
                            How long you want the generated music to be (in seconds).

                            - **[Overlap (number)]:**  
                            How much each new segment will reference the previous segment (in seconds).  
                            For example, if you choose 20s: Each new segment after the first one will reference the previous segment 20s  
                            and will generate only 10s of new music. The model can only process 30s of music.

                            - **[Seed (number)]:**  
                            Your generated music id. If you wish to generate the exact same music,  
                            place the exact seed with the exact prompts  
                            (This way you can also extend specific song that was generated short).

                            - **[Random Seed (button)]:**  
                            Gives "-1" as a seed, which counts as a random seed.

                            - **[Copy Previous Seed (button)]:**  
                            Copies the seed from the output seed (if you don't feel like doing it manualy).

                            ---

                            ### Audio Tab:

                            - **[Input Type (selection)]:**  
                            `File` mode allows you to upload an audio file to use as input  
                            `Mic` mode allows you to use your microphone as input

                            - **[Input Audio Mode (selection)]:**  
                            `Melody` mode only works with the melody model: it conditions the music generation to reference the melody  
                            `Sample` mode works with any model: it gives a music sample to the model to generate its continuation.

                            - **[Trim Start and Trim End (numbers)]:**  
                            `Trim Start` set how much you'd like to trim the input audio from the start  
                            `Trim End` same as the above but from the end

                            - **[Input Audio (audio file)]:**  
                            Input here the audio you wish to use with "melody" or "sample" mode.

                            ---

                            ### Customization Tab:

                            - **[Background Color (color)]:**  
                            Works only if you don't upload image. Color of the background of the waveform.

                            - **[Bar Color Start (color)]:**  
                            First color of the waveform bars.

                            - **[Bar Color End (color)]:**  
                            Second color of the waveform bars.

                            - **[Background Image (image)]:**  
                            Background image that you wish to be attached to the generated video along with the waveform.

                            - **[Height and Width (numbers)]:**  
                            Output video resolution, only works with image.  
                            (minimum height and width is 256).
                            
                            ---

                            ### Settings Tab:

                            - **[Output Audio Channels (selection)]:**  
                            With this you can select the amount of channels that you wish for your output audio.  
                            `mono` is a straightforward single channel audio  
                            `stereo` is a dual channel audio but it will sound more or less like mono  
                            `stereo effect` this one is also dual channel but uses tricks to simulate a stereo audio.

                            - **[Output Audio Sample Rate (dropdown)]:**  
                            The output audio sample rate, the model default is 32000.

                            - **[Model (selection)]:**  
                            Here you can choose which model you wish to use:  
                            `melody` model is based on the medium model with a unique feature that lets you use melody conditioning  
                            `small` model is trained on 300M parameters  
                            `medium` model is trained on 1.5B parameters  
                            `large` model is trained on 3.3B parameters  
                            `custom` model runs the custom model that you provided.

                            - **[Custom Model (selection)]:**  
                            This dropdown will show you models that are placed in the `models` folder  
                            you must select `custom` in the model options in order to use it.

                            - **[Refresh (button)]:**  
                            Refreshes the dropdown list for custom model.

                            - **[Base Model (selection)]:**  
                            Choose here the model that your custom model is based on.

                            - **[Top-k (number)]:**  
                            is a parameter used in text generation models, including music generation models. It determines the number of most likely next tokens to consider at each step of the generation process. The model ranks all possible tokens based on their predicted probabilities, and then selects the top-k tokens from the ranked list. The model then samples from this reduced set of tokens to determine the next token in the generated sequence. A smaller value of k results in a more focused and deterministic output, while a larger value of k allows for more diversity in the generated music.

                            - **[Top-p (number)]:**  
                            also known as nucleus sampling or probabilistic sampling, is another method used for token selection during text generation. Instead of specifying a fixed number like top-k, top-p considers the cumulative probability distribution of the ranked tokens. It selects the smallest possible set of tokens whose cumulative probability exceeds a certain threshold (usually denoted as p). The model then samples from this set to choose the next token. This approach ensures that the generated output maintains a balance between diversity and coherence, as it allows for a varying number of tokens to be considered based on their probabilities.
                            
                            - **[Temperature (number)]:**  
                            is a parameter that controls the randomness of the generated output. It is applied during the sampling process, where a higher temperature value results in more random and diverse outputs, while a lower temperature value leads to more deterministic and focused outputs. In the context of music generation, a higher temperature can introduce more variability and creativity into the generated music, but it may also lead to less coherent or structured compositions. On the other hand, a lower temperature can produce more repetitive and predictable music.

                            - **[Classifier Free Guidance (number)]:**  
                            refers to a technique used in some music generation models where a separate classifier network is trained to provide guidance or control over the generated music. This classifier is trained on labeled data to recognize specific musical characteristics or styles. During the generation process, the output of the generator model is evaluated by the classifier, and the generator is encouraged to produce music that aligns with the desired characteristics or style. This approach allows for more fine-grained control over the generated music, enabling users to specify certain attributes they want the model to capture.
                            """
                        )
                    with gr.Tab("Changelog"):
                        gr.Markdown(
                            """
                            ## Changelog:

                            ### V1.2.7

                            - When sending generated audio to Input Audio, it will send a backup audio with default settings  
                            (best for continuos generation)

                            - Added Metadata to generated audio (Thanks to AlexHK ♥)

                            - Added Audio Info tab that will display the metadata of the input audio

                            - Added "send to Text2Audio" button in Audio Info tab

                            - Generated audio is now stored in the "output" folder (Thanks to AlexHK ♥)

                            - Added an output area with generated files and download buttons

                            - Enhanced Stereo effect (Thanks to AlexHK ♥)



                            ### V1.2.6

                            - Added option to generate in stereo (instead of only mono)

                            - Added dropdown for selecting output sample rate (model default is 32000)



                            ### V1.2.5a

                            - Added file cleaner (This comes from the main facebookresearch repo)

                            - Reorganized a little, moved audio to a seperate tab



                            ### V1.2.5

                            - Gave a unique lime theme to the webui
                            
                            - Added additional output for audio only

                            - Added button to send generated audio to Input Audio

                            - Added option to trim Input Audio



                            ### V1.2.4

                            - Added mic input (This comes from the main facebookresearch repo)



                            ### V1.2.3

                            - Added option to change video size to fit the image you upload



                            ### V1.2.2

                            - Added Wiki, Changelog and About tabs



                            ### V1.2.1

                            - Added tabs and organized the entire interface

                            - Added option to attach image to the output video

                            - Added option to load fine-tuned models (Yet to be tested)



                            ### V1.2.0

                            - Added Multi-Prompt



                            ### V1.1.3

                            - Added customization options for generated waveform



                            ### V1.1.2

                            - Removed sample length limit: now you can input audio of any length as music sample



                            ### V1.1.1

                            - Improved music sample audio quality when using music continuation



                            ### V1.1.0

                            - Rebuilt the repo on top of the latest structure of the main MusicGen repo
                            
                            - Improved Music continuation feature



                            ### V1.0.0 - Stable Version

                            - Added Music continuation
                            """
                        )
                    with gr.Tab("About"):
                        gr.Markdown(
                            """
                            This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
                            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
                            
                            ## MusicGen+ is an extended version of the original MusicGen by facebookresearch. 
                            
                            ### Repo: https://github.com/GrandaddyShmax/audiocraft_plus/tree/plus

                            ---
                            
                            ### This project was possible thanks to:

                            #### GrandaddyShmax - https://github.com/GrandaddyShmax

                            #### Camenduru - https://github.com/camenduru

                            #### rkfg - https://github.com/rkfg

                            #### oobabooga - https://github.com/oobabooga
                            
                            #### AlexHK - https://github.com/alanhk147
                            """
                        )
        with gr.Tab("Audio Info"):
            with gr.Row():
                with gr.Column():
                    in_audio = gr.File(source="upload", type="file", label="Input Any Audio", interactive=True)
                    send_gen = gr.Button("Send to Text2Audio", variant="primary")
                with gr.Column():
                    info = gr.Textbox(label="Audio Info", lines=10, interactive=False)
                    
        send_gen.click(info_to_params, inputs=[in_audio], outputs=[model, s, prompts[0], prompts[1], prompts[2], prompts[3], prompts[4], prompts[5], prompts[6], prompts[7], prompts[8], prompts[9], repeats[0], repeats[1], repeats[2], repeats[3], repeats[4], repeats[5], repeats[6], repeats[7], repeats[8], repeats[9], mode, duration, topk, topp, temperature, cfg_coef, seed, overlap, channel, sr_select], queue=False)
        in_audio.change(get_audio_info, in_audio, outputs=[info])
        reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False)
        send_audio.click(fn=lambda x: x, inputs=[backup_only], outputs=[audio], queue=False)
        submit.click(predict_full, inputs=[model, dropdown, basemodel, s, prompts[0], prompts[1], prompts[2], prompts[3], prompts[4], prompts[5], prompts[6], prompts[7], prompts[8], prompts[9], repeats[0], repeats[1], repeats[2], repeats[3], repeats[4], repeats[5], repeats[6], repeats[7], repeats[8], repeats[9], audio, mode, trim_start, trim_end, duration, topk, topp, temperature, cfg_coef, seed, overlap, image, height, width, background, bar1, bar2, channel, sr_select], outputs=[output, audio_only, backup_only, download, seed_used])
        input_type.change(toggle_audio_src, input_type, [audio], queue=False, show_progress=False)

        def variable_outputs(k):
            k = int(k) - 1
            return [gr.Textbox.update(visible=True)]*k + [gr.Textbox.update(visible=False)]*(max_textboxes-k)
        def get_size(image):
            if image is not None:
                img = Image.open(image)
                img_height = img.height
                img_width = img.width
                if (img_height%2) != 0:
                    img_height = img_height + 1
                if (img_width%2) != 0:
                    img_width = img_width + 1
                return img_height, img_width
            else:
                return 512, 768

        image.change(get_size, image, outputs=[height, width])
        s.change(variable_outputs, s, textboxes)
        interface.queue().launch(**launch_kwargs)


def ui_batched(launch_kwargs):
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # MusicGen

            This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
            <br/>
            <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            for longer sequences, more control and no queue.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Describe your music", lines=2, interactive=True)
                    with gr.Column():
                        radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic")
                        melody = gr.Audio(source="upload", type="numpy", label="File", interactive=True, elem_id="melody-input")
                with gr.Row():
                    submit = gr.Button("Generate")
            with gr.Column():
                output = gr.Video(label="Generated Music")
        submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
        radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
        gr.Examples(
            fn=predict_batched,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
                    "./assets/bach.mp3",
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                ],
            ],
            inputs=[text, melody],
            outputs=[output]
        )

        demo.queue(max_size=8 * 4).launch(**launch_kwargs)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )
    parser.add_argument(
        '--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
    )

    parser.add_argument(
        '--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
    )

    parser.add_argument(
        '--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
    )

    args = parser.parse_args()
    UNLOAD_MODEL = args.unload_model
    MOVE_TO_CPU = args.unload_to_cpu
    if args.cache:
        MODELS = {}

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share

    # Show the interface
    if IS_BATCHED:
        ui_batched(launch_kwargs)
    else:
        ui_full(launch_kwargs)