File size: 1,730 Bytes
00f2826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math

from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler


class CosineLRScheduler(_LRScheduler):
    """Cosine LR scheduler.

    Args:
        optimizer (Optimizer): Torch optimizer.
        warmup_steps (int): Number of warmup steps.
        total_steps (int): Total number of steps.
        lr_min_ratio (float): Minimum learning rate.
        cycle_length (float): Cycle length.
    """
    def __init__(self, optimizer: Optimizer, total_steps: int, warmup_steps: int,
                 lr_min_ratio: float = 0.0, cycle_length: float = 1.0):
        self.warmup_steps = warmup_steps
        assert self.warmup_steps >= 0
        self.total_steps = total_steps
        assert self.total_steps >= 0
        self.lr_min_ratio = lr_min_ratio
        self.cycle_length = cycle_length
        super().__init__(optimizer)

    def _get_sched_lr(self, lr: float, step: int):
        if step < self.warmup_steps:
            lr_ratio = step / self.warmup_steps
            lr = lr_ratio * lr
        elif step <= self.total_steps:
            s = (step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
            lr_ratio = self.lr_min_ratio + 0.5 * (1 - self.lr_min_ratio) * \
                (1. + math.cos(math.pi * s / self.cycle_length))
            lr = lr_ratio * lr
        else:
            lr_ratio = self.lr_min_ratio
            lr = lr_ratio * lr
        return lr

    def get_lr(self):
        return [self._get_sched_lr(lr, self.last_epoch) for lr in self.base_lrs]