File size: 16,316 Bytes
0b70dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from collections import OrderedDict
import torch
import torch.nn as nn
from functools import partial
from timm.models.layers import trunc_normal_, DropPath, to_2tuple


def conv_3xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
    return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups)
    
def conv_1xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
    return nn.Conv3d(inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups)

def conv_3xnxn_std(inp, oup, kernel_size=3, stride=3, groups=1):
    return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (1, stride, stride), (1, 0, 0), groups=groups)

def conv_1x1x1(inp, oup, groups=1):
    return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups)

def conv_3x3x3(inp, oup, groups=1):
    return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups)

def conv_5x5x5(inp, oup, groups=1):
    return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups)

def bn_3d(dim):
    return nn.BatchNorm3d(dim)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CMlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = conv_1x1x1(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = conv_1x1x1(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
    
    
class CBlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
        self.norm1 = bn_3d(dim)
        self.conv1 = conv_1x1x1(dim, dim, 1)
        self.conv2 = conv_1x1x1(dim, dim, 1)
        self.attn = conv_5x5x5(dim, dim, groups=dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = bn_3d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x   


class SABlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        B, C, T, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.transpose(1, 2).reshape(B, C, T, H, W)
        return x    


class SplitSABlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
        self.t_norm = norm_layer(dim)
        self.t_attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        B, C, T, H, W = x.shape
        attn = x.view(B, C, T, H * W).permute(0, 3, 2, 1).contiguous()
        attn = attn.view(B * H * W, T, C)
        attn = attn + self.drop_path(self.t_attn(self.t_norm(attn)))
        attn = attn.view(B, H * W, T, C).permute(0, 2, 1, 3).contiguous()
        attn = attn.view(B * T, H * W, C)
        residual = x.view(B, C, T, H * W).permute(0, 2, 3, 1).contiguous()
        residual = residual.view(B * T, H * W, C)
        attn = residual + self.drop_path(self.attn(self.norm1(attn)))
        attn = attn.view(B, T * H * W, C)
        out = attn + self.drop_path(self.mlp(self.norm2(attn)))
        out = out.transpose(1, 2).reshape(B, C, T, H, W)
        return out


class SpeicalPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.norm = nn.LayerNorm(embed_dim)
        self.proj = conv_3xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])

    def forward(self, x):
        B, C, T, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        B, C, T, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
        return x
    

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, std=False):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.norm = nn.LayerNorm(embed_dim)
        if std:
            self.proj = conv_3xnxn_std(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])
        else:
            self.proj = conv_1xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])

    def forward(self, x):
        B, C, T, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        B, C, T, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
        return x


class Uniformer(nn.Module):
    """ Vision Transformer
    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
        https://arxiv.org/abs/2010.11929
    """
    def __init__(self, depth=[5, 8, 20, 7], num_classes=400, img_size=224, in_chans=3, embed_dim=[64, 128, 320, 512],
                 head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
                 drop_rate=0.3, attn_drop_rate=0., drop_path_rate=0., norm_layer=None, split=False, std=False):
        super().__init__()

        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = partial(nn.LayerNorm, eps=1e-6) 
        
        self.patch_embed1 = SpeicalPatchEmbed(
            img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
        self.patch_embed2 = PatchEmbed(
            img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1], std=std)
        self.patch_embed3 = PatchEmbed(
            img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2], std=std)
        self.patch_embed4 = PatchEmbed(
            img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3], std=std)

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))]  # stochastic depth decay rule
        num_heads = [dim // head_dim for dim in embed_dim]
        self.blocks1 = nn.ModuleList([
            CBlock(
                dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
            for i in range(depth[0])])
        self.blocks2 = nn.ModuleList([
            CBlock(
                dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
            for i in range(depth[1])])
        if split:
            self.blocks3 = nn.ModuleList([
                SplitSABlock(
                    dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer)
                for i in range(depth[2])])
            self.blocks4 = nn.ModuleList([
                SplitSABlock(
                    dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer)
            for i in range(depth[3])])
        else:
            self.blocks3 = nn.ModuleList([
                SABlock(
                    dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer)
                for i in range(depth[2])])
            self.blocks4 = nn.ModuleList([
                SABlock(
                    dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer)
            for i in range(depth[3])])
        self.norm = bn_3d(embed_dim[-1])
        
        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()
        
        # Classifier head
        self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
        
        self.apply(self._init_weights)

        for name, p in self.named_parameters():
            # fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs
            # are multiplied by 0*0, which is hard for the model to move out of.
            if 't_attn.qkv.weight' in name:
                nn.init.constant_(p, 0)
            if 't_attn.qkv.bias' in name:
                nn.init.constant_(p, 0)
            if 't_attn.proj.weight' in name:
                nn.init.constant_(p, 1)
            if 't_attn.proj.bias' in name:
                nn.init.constant_(p, 0)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed1(x)
        x = self.pos_drop(x)
        for blk in self.blocks1:
            x = blk(x)
        x = self.patch_embed2(x)
        for blk in self.blocks2:
            x = blk(x)
        x = self.patch_embed3(x)
        for blk in self.blocks3:
            x = blk(x)
        x = self.patch_embed4(x)
        for blk in self.blocks4:
            x = blk(x)
        x = self.norm(x)
        x = self.pre_logits(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = x.flatten(2).mean(-1)
        x = self.head(x)
        return x
        

def uniformer_small():
    return Uniformer(
        depth=[3, 4, 8, 3], embed_dim=[64, 128, 320, 512], 
        head_dim=64, drop_rate=0.1)

def uniformer_base():
    return Uniformer(
        depth=[5, 8, 20, 7], embed_dim=[64, 128, 320, 512], 
        head_dim=64, drop_rate=0.3)