Spaces:
Runtime error
Runtime error
File size: 8,939 Bytes
052c05b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
"""
A Gradio Blocks Demo App.
Generate a large batch of samples from a super resolution model, given a batch
of samples from a regular model from image_sample.py.
"""
import gradio as gr
import argparse
import os
import glob
import blobfile as bf
import numpy as np
import torch as th
import torch.distributed as dist
from PIL import Image, ImageDraw
from torchvision import utils
from pixel_guide_diffusion import dist_util, logger
from pixel_guide_diffusion.image_datasets import load_data
from pixel_guide_diffusion.script_util import (
pg_model_and_diffusion_defaults,
pg_create_model_and_diffusion,
pgsr_model_and_diffusion_defaults,
pgsr_create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
MODEL_FLAGS="--image_size=32 --small_size=32 --large_size=128 --guide_size=128 --num_channels=128 --num_channels2=64 --num_res_blocks=3 --learn_sigma=True --dropout=0.0 --use_attention2=False"
DIFFUSION_FLAGS="--diffusion_steps=4000 --noise_schedule=cosine"
TEST_FLAGS="--batch_size=1 --seed=233 --num_samples=4"
OTHER_FLAGS = '''\
--timestep_respacing=16 \
--use_ddim=False \
--model_path=./danbooru2017_guided_log/ema_0.9999_360000.pt \
--model_path2=./danbooru2017_guided_sr_log/ema_0.9999_360000.pt'''
OTHER_FLAGS = OTHER_FLAGS.replace('\r\n', ' ').replace('\n', ' ')
flags = OTHER_FLAGS.split(' ') + MODEL_FLAGS.split(' ') + DIFFUSION_FLAGS.split(' ') + TEST_FLAGS.split(' ')
def norm_size(img, size=128, add_edges=True):
img = img.convert('L')
w, h = img.size
if w != h:
scale = 1024 / max(img.size)
img = img.resize([int(round(s*scale)) for s in img.size])
w, h = img.size
max_size = max(w, h)
x0 = (max_size - w) // 2
y0 = (max_size - h) // 2
x1 = x0 + w
y1 = y0 + h
canvas = Image.new('L', (max_size,max_size), 255)
canvas.paste(img, (x0,y0,x1,y1))
if add_edges:
draw = ImageDraw.Draw(canvas)
draw.line((x0-5,0,x0-1,max_size), fill=0)
draw.line((0,y0-5,max_size,y0-1), fill=0)
draw.line((x1+1,0,x1+5,max_size), fill=0)
draw.line((0,y1+1,max_size,y1+5), fill=0)
img = canvas
img = img.resize((size,size), resample=Image.LANCZOS)
return img
def create_argparser():
defaults = dict(
data_dir="",
guide_dir="",
clip_denoised=True,
num_samples=100,
batch_size=4,
use_ddim=False,
base_samples="",
model_path="",
seed=-1,
)
defaults.update(pg_model_and_diffusion_defaults())
defaults.update(pgsr_model_and_diffusion_defaults())
defaults.update(dict(
num_channels2=128,
use_attention2=True,
model_path2="",
))
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
@th.inference_mode()
def main():
args = create_argparser().parse_args(flags)
dist_util.setup_dist()
logger.configure()
logger.log("creating model...")
model, diffusion = pg_create_model_and_diffusion(
**args_to_dict(args, pg_model_and_diffusion_defaults().keys())
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(dist_util.dev())
model.eval()
logger.log("creating model2...")
args.num_channels = args.num_channels2
args.use_attention = args.use_attention2
model2, diffusion2 = pgsr_create_model_and_diffusion(
**args_to_dict(args, pgsr_model_and_diffusion_defaults().keys())
)
model2.load_state_dict(
dist_util.load_state_dict(args.model_path2, map_location="cpu")
)
model2.to(dist_util.dev())
model2.eval()
def inference(img, seed, add_edges):
th.manual_seed(int(seed))
sketch = sketch_out = norm_size(img, size=128, add_edges=add_edges)
sketch = np.asarray(sketch).astype(np.float32) / 127.5 - 1
sketch = th.from_numpy(sketch).float()[None,None].to(dist_util.dev())
model_kwargs = { "guide": sketch }
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model,
(args.batch_size, 3, args.image_size, args.image_size),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
)
model_kwargs["low_res"] = sample
sample_fn2 = (
diffusion2.p_sample_loop if not args.use_ddim else diffusion2.ddim_sample_loop
)
sample2 = sample_fn2(
model2,
(args.batch_size, 3, args.large_size, args.large_size),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
)
out = (sample2[0].clamp(-1,1).cpu().numpy() + 1) / 2 * 255
out = np.uint8(out)
out = out.transpose([1,2,0])
out = Image.fromarray(out)
return sketch_out, out
with gr.Blocks() as demo:
gr.Markdown('''<center><h1>Anime-Colorization</h1></center>
<h2>Colorize your anime sketches with this app.</h2>
This is a Gradio Blocks app of
<a href="https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization">
HighCWu/pixel-guide-diffusion-for-anime-colorization
</a>.<br />
(PS: Training Datasets are made from <a href="https://www.kaggle.com/datasets/wuhecong/danbooru-sketch-pair-128x">
HighCWu/danbooru-sketch-pair-128x
</a> which processed real anime images to sketches by
<a href="https://github.com/lllyasviel/sketchKeras">SketchKeras</a>.
So the model is not very sensitive to some different styles of sketches,
and the colorized results of such sketches are not very good.)
''')
with gr.Row():
with gr.Box():
with gr.Column():
with gr.Row():
seed_in = gr.Number(
value=233,
label='Seed'
)
with gr.Row():
edges_in = gr.Checkbox(
label="Add Edges"
)
with gr.Row():
sketch_in = gr.Image(
type="pil",
label="Sketch"
)
with gr.Row():
generate_button = gr.Button('Generate')
with gr.Row():
gr.Markdown('Click to add example as input.π')
with gr.Row():
example_sketch_paths = [[p] for p in sorted(glob.glob('docs/imgs/anime_sketch/*.png'))]
example_sketch = gr.Dataset(
components=[sketch_in],
samples=example_sketch_paths
)
with gr.Row():
gr.Markdown('These are expect real outputs.π')
with gr.Row():
example_real_paths = [[p] for p in sorted(glob.glob('docs/imgs/anime/*.png'))]
example_real = gr.Dataset(
components=[sketch_in],
samples=example_real_paths
)
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column():
sketch_out = gr.Image(
type="pil",
label="Input"
)
with gr.Column():
colorized_out = gr.Image(
type="pil",
label="Colorization Result"
)
with gr.Row():
gr.Markdown(
'Here are some samples π [top: sketch, center: generated, bottom: real]'
)
with gr.Row():
gr.Image(
value="docs/imgs/sample.png",
type="filepath",
interactive=False,
label="Samples"
)
gr.Markdown(
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.anime-colorization" alt="visitor badge"/></center>'
)
generate_button.click(
inference, inputs=[sketch_in, seed_in, edges_in], outputs=[sketch_out, colorized_out]
)
example_sketch.click(
fn=lambda examples: gr.Image.update(value=examples[0]),
inputs=example_sketch,
outputs=example_sketch.components
)
demo.launch()
if __name__ == '__main__':
main()
|