File size: 8,939 Bytes
052c05b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
A Gradio Blocks Demo App.
Generate a large batch of samples from a super resolution model, given a batch
of samples from a regular model from image_sample.py.
"""

import gradio as gr
import argparse
import os
import glob

import blobfile as bf
import numpy as np
import torch as th
import torch.distributed as dist

from PIL import Image, ImageDraw
from torchvision import utils
from pixel_guide_diffusion import dist_util, logger
from pixel_guide_diffusion.image_datasets import load_data
from pixel_guide_diffusion.script_util import (
    pg_model_and_diffusion_defaults,
    pg_create_model_and_diffusion,
    pgsr_model_and_diffusion_defaults,
    pgsr_create_model_and_diffusion,
    args_to_dict,
    add_dict_to_argparser,
)

MODEL_FLAGS="--image_size=32 --small_size=32 --large_size=128 --guide_size=128 --num_channels=128 --num_channels2=64 --num_res_blocks=3 --learn_sigma=True --dropout=0.0 --use_attention2=False"
DIFFUSION_FLAGS="--diffusion_steps=4000 --noise_schedule=cosine"
TEST_FLAGS="--batch_size=1 --seed=233 --num_samples=4"
OTHER_FLAGS = '''\
--timestep_respacing=16 \
--use_ddim=False \
--model_path=./danbooru2017_guided_log/ema_0.9999_360000.pt \
--model_path2=./danbooru2017_guided_sr_log/ema_0.9999_360000.pt'''
OTHER_FLAGS = OTHER_FLAGS.replace('\r\n', ' ').replace('\n', ' ')
flags = OTHER_FLAGS.split(' ') + MODEL_FLAGS.split(' ') + DIFFUSION_FLAGS.split(' ') + TEST_FLAGS.split(' ')


def norm_size(img, size=128, add_edges=True):
    img = img.convert('L')
    w, h = img.size
    if w != h:
        scale = 1024 / max(img.size)
        img = img.resize([int(round(s*scale)) for s in img.size])
        w, h = img.size
        max_size = max(w, h)
        x0 = (max_size - w) // 2
        y0 = (max_size - h) // 2
        x1 = x0 + w
        y1 = y0 + h
        canvas = Image.new('L', (max_size,max_size), 255)
        canvas.paste(img, (x0,y0,x1,y1))

        if add_edges:
            draw = ImageDraw.Draw(canvas) 
            draw.line((x0-5,0,x0-1,max_size), fill=0)
            draw.line((0,y0-5,max_size,y0-1), fill=0)
            draw.line((x1+1,0,x1+5,max_size), fill=0)
            draw.line((0,y1+1,max_size,y1+5), fill=0)

        img = canvas
    img = img.resize((size,size), resample=Image.LANCZOS)

    return img


def create_argparser():
    defaults = dict(
        data_dir="",
        guide_dir="",
        clip_denoised=True,
        num_samples=100,
        batch_size=4,
        use_ddim=False,
        base_samples="",
        model_path="",
        seed=-1,
    )
    defaults.update(pg_model_and_diffusion_defaults())
    defaults.update(pgsr_model_and_diffusion_defaults())
    defaults.update(dict(
        num_channels2=128,
        use_attention2=True,
        model_path2="",
    ))
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)
    return parser


@th.inference_mode()
def main():
    args = create_argparser().parse_args(flags)

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model...")
    model, diffusion = pg_create_model_and_diffusion(
        **args_to_dict(args, pg_model_and_diffusion_defaults().keys())
    )
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu")
    )
    model.to(dist_util.dev())
    model.eval()

    logger.log("creating model2...")
    args.num_channels = args.num_channels2
    args.use_attention = args.use_attention2
    model2, diffusion2 = pgsr_create_model_and_diffusion(
        **args_to_dict(args, pgsr_model_and_diffusion_defaults().keys())
    )
    model2.load_state_dict(
        dist_util.load_state_dict(args.model_path2, map_location="cpu")
    )
    model2.to(dist_util.dev())
    model2.eval()

    def inference(img, seed, add_edges):
        th.manual_seed(int(seed))
        sketch = sketch_out = norm_size(img, size=128, add_edges=add_edges)
        sketch = np.asarray(sketch).astype(np.float32) / 127.5 - 1
        sketch = th.from_numpy(sketch).float()[None,None].to(dist_util.dev())
        model_kwargs = { "guide": sketch }
        sample_fn = (
            diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
        )
        sample = sample_fn(
            model,
            (args.batch_size, 3, args.image_size, args.image_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
        )
        
        model_kwargs["low_res"] = sample
        sample_fn2 = (
            diffusion2.p_sample_loop if not args.use_ddim else diffusion2.ddim_sample_loop
        )
        sample2 = sample_fn2(
            model2,
            (args.batch_size, 3, args.large_size, args.large_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
        )
        out = (sample2[0].clamp(-1,1).cpu().numpy() + 1) / 2 * 255
        out = np.uint8(out)
        out = out.transpose([1,2,0])
        out = Image.fromarray(out)

        return sketch_out, out

    with gr.Blocks() as demo:
        gr.Markdown('''<center><h1>Anime-Colorization</h1></center>
<h2>Colorize your anime sketches with this app.</h2>
This is a Gradio Blocks app of 
<a href="https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization">
HighCWu/pixel-guide-diffusion-for-anime-colorization
</a>.<br />
(PS: Training Datasets are made from <a href="https://www.kaggle.com/datasets/wuhecong/danbooru-sketch-pair-128x">
HighCWu/danbooru-sketch-pair-128x
</a> which processed real anime images to sketches by 
<a href="https://github.com/lllyasviel/sketchKeras">SketchKeras</a>.
So the model is not very sensitive to some different styles of sketches,
and the colorized results of such sketches are not very good.)
''')
        with gr.Row():
            with gr.Box():
                with gr.Column():
                    with gr.Row():
                        seed_in = gr.Number(
                            value=233, 
                            label='Seed'
                        )
                    with gr.Row():
                        edges_in = gr.Checkbox(
                            label="Add Edges"
                        )
                    with gr.Row():
                        sketch_in = gr.Image(
                            type="pil", 
                            label="Sketch"
                        )
                    with gr.Row():
                        generate_button = gr.Button('Generate')
                    with gr.Row():
                        gr.Markdown('Click to add example as input.πŸ‘‡')
                    with gr.Row():
                        example_sketch_paths = [[p] for p in sorted(glob.glob('docs/imgs/anime_sketch/*.png'))]
                        example_sketch = gr.Dataset(
                            components=[sketch_in], 
                            samples=example_sketch_paths
                        )
                    with gr.Row():
                        gr.Markdown('These are expect real outputs.πŸ‘‡')
                    with gr.Row():
                        example_real_paths = [[p] for p in sorted(glob.glob('docs/imgs/anime/*.png'))]
                        example_real = gr.Dataset(
                            components=[sketch_in], 
                            samples=example_real_paths
                        )
        
            with gr.Box():
                with gr.Column():
                    with gr.Row():
                        with gr.Column():
                            sketch_out = gr.Image(
                                type="pil", 
                                label="Input"
                            )
                        with gr.Column():
                            colorized_out = gr.Image(
                                type="pil", 
                                label="Colorization Result"
                            )
                    with gr.Row():
                        gr.Markdown(
                            'Here are some samples πŸ‘‡ [top: sketch, center: generated, bottom: real]'
                        )
                    with gr.Row():
                        gr.Image(
                            value="docs/imgs/sample.png",
                            type="filepath", 
                            interactive=False,
                            label="Samples"
                        )
        gr.Markdown(
            '<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.anime-colorization" alt="visitor badge"/></center>'
        )

        generate_button.click(
            inference, inputs=[sketch_in, seed_in, edges_in], outputs=[sketch_out, colorized_out]
        )
        example_sketch.click(
            fn=lambda examples: gr.Image.update(value=examples[0]), 
            inputs=example_sketch, 
            outputs=example_sketch.components
        )
        
        demo.launch()

if __name__ == '__main__':
    main()