File size: 8,829 Bytes
527d5e6
 
 
27f75e4
b0a9549
f79bf90
edaaf4f
c3d46df
7dbd9b3
ad3ea9b
e37d735
ad3ea9b
b0a9549
527d5e6
8af272d
 
 
527d5e6
 
f09eeaa
 
 
 
 
 
 
 
 
 
 
 
 
b0a9549
f09eeaa
 
 
 
 
 
 
 
 
28d279e
f09eeaa
 
 
 
 
 
 
 
 
605e778
 
f09eeaa
 
 
 
28d279e
 
6010350
92daced
28d279e
b69cb8c
92daced
8da8563
f09eeaa
28c97fa
f09eeaa
 
4a2e5d1
f09eeaa
8da8563
7a4417c
8da8563
f09eeaa
 
527d5e6
 
 
 
 
b0a9549
527d5e6
 
 
 
 
 
 
 
 
 
 
 
 
b0a9549
527d5e6
 
 
f09eeaa
527d5e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f567e8
527d5e6
 
ffcd8ed
 
 
 
 
 
527d5e6
8f567e8
527d5e6
 
9ccc595
527d5e6
 
 
 
ef53b73
28c97fa
527d5e6
 
28c97fa
 
 
527d5e6
d10d751
28c97fa
 
527d5e6
28c97fa
 
527d5e6
 
 
 
7dbd9b3
1a39558
2a93029
8da8563
527d5e6
203beb3
ef53b73
 
cecb879
203beb3
ef53b73
8da8563
 
 
ef53b73
203beb3
 
f09eeaa
 
 
 
 
 
 
 
fb66c76
f09eeaa
ef53b73
 
 
 
 
 
 
 
 
 
 
 
 
f09eeaa
 
 
ef53b73
 
 
 
f09eeaa
ef53b73
 
f09eeaa
4940b1c
 
f09eeaa
 
 
 
 
 
 
209d5da
8da8563
209d5da
f09eeaa
849dabd
f09eeaa
e3a5cd7
4f08108
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import ffmpeg
from pathlib import Path
import os
import ast
import json
import base64
import requests
import moviepy.editor as mp
from PIL import Image, ImageSequence
import cv2


API_URL = "https://api-inference.huggingface.co/models/facebook/wav2vec2-base-960h"
headers = {"Authorization": "Bearer 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"}
#HF_TOKEN = os.environ["HF_TOKEN"]
#headers = {"Authorization": f"Bearer {HF_TOKEN}"}


def generate_transcripts(in_video): #generate_gifs(in_video, gif_transcript):
    print("********* Inside generate_transcripts() **********")
    #convert video to audio
    print(f" input video is : {in_video}")
    
    video_path = Path("./ShiaLaBeouf.mp4")
    audio_memory, _ = ffmpeg.input(video_path).output('-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
    
    #Getting transcripts using wav2Vec2 huggingface hosted accelerated inference
    #sending audio file in request along with stride and chunk length information
    model_response = query_api(audio_memory)
    
    #model response has both - transcripts as well as character timestamps or chunks
    print(f"model_response is : {model_response}")
    transcription = model_response["text"].lower()
    chnk = model_response["chunks"]
    
    #creating lists from chunks to consume downstream easily
    timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
              for chunk in chnk]
    
    #getting words and word timestamps
    words, words_timestamp = get_word_timestamps(timestamps)
    print(f"Total words in the audio transcript is:{len(words)}, transcript word list is :{words}, type of words is :{type(words)} ") 
    print(f"Total Word timestamps derived fromcharacter timestamp are :{len(words_timestamp)}, Word timestamps are :{words_timestamp}")
    
    return transcription, words, words_timestamp
    
    
def generate_gifs(gif_transcript, words, words_timestamp):
    print("********* Inside generate_gifs() **********")
    
    #creating list from input gif transcript 
    #gif = "don't let your dreams be dreams"
    gif = gif_transcript
    #gif = gif_transcript
    giflist = gif.split()
    
    #getting gif indexes from the generator
    # Converting string to list
    words = ast.literal_eval(words)
    words_timestamp = ast.literal_eval(words_timestamp)
    print(f"words is :{words}")
    print(f"type of words is :{type(words)}")
    print(f"length of words is :{len(words)}")
    print(f"giflist is :{giflist}")

    giflist_indxs = list(list(get_gif_word_indexes(words, giflist))[0])
    print(f"giflist_indxs is : {giflist_indxs}")
    #getting start and end timestamps for a gif video
    start_seconds, end_seconds = get_gif_timestamps(giflist_indxs, words_timestamp)
    print(f"start_seconds, end_seconds  are : ({start_seconds}, {end_seconds})")
    #generated .gif image
    gif_out = gen_moviepy_gif(start_seconds, end_seconds)
    #im.save('./gifimage1.gif', save_all=True)
    return gif_out 

    
#calling the hosted model
def query_api(audio_bytes: bytes):
    """
    Query for Huggingface Inference API for Automatic Speech Recognition task
    """
    print("********* Inside query_api() **********")
    payload = json.dumps({
        "inputs": base64.b64encode(audio_bytes).decode("utf-8"),
        "parameters": {
            "return_timestamps": "char",
            "chunk_length_s": 10,
            "stride_length_s": [4, 2]
        },
        "options": {"use_gpu": False}
    }).encode("utf-8")

    response = requests.request(
        "POST", API_URL, headers=headers, data=payload)
    json_reponse = json.loads(response.content.decode("utf-8"))
    print(f"json_reponse is :{json_reponse}")
    return json_reponse


#getting word timestamps from character timestamps
def get_word_timestamps(timestamps): 
  words, word = [], []
  letter_timestamp, word_timestamp, words_timestamp = [], [], []
  for idx,entry in enumerate(timestamps):
    word.append(entry[0])
    letter_timestamp.append(entry[1])
    if entry[0] == ' ':
      words.append(''.join(word))
      word_timestamp.append(letter_timestamp[0])
      word_timestamp.append(timestamps[idx-1][2])
      words_timestamp.append(word_timestamp)
      word, word_timestamp, letter_timestamp = [], [], []

  words = [word.strip() for word in words]
  return words, words_timestamp


#getting index of gif words in main transcript
def get_gif_word_indexes(total_words_list, gif_words_list):  
    if not gif_words_list:
        return
    # just optimization
    COUNT=0
    lengthgif_words_list = len(gif_words_list)
    firstgif_words_list = gif_words_list[0]
    
    print(f"total_words_list is :{total_words_list}")
    print(f"length of total_words_list is :{len(total_words_list)}")
    print(f"gif_words_list is :{gif_words_list}")
    print(f"length of gif_words_list is :{len(gif_words_list)}")
    
    for idx, item in enumerate(total_words_list):
        COUNT+=1
        if item == firstgif_words_list:
            if total_words_list[idx:idx+lengthgif_words_list] == gif_words_list:
                print(f"value of tuple is : {tuple(range(idx, idx+lengthgif_words_list))}")
                yield tuple(range(idx, idx+lengthgif_words_list))


#getting start and end timestamps for gif transcript
def get_gif_timestamps(giflist_indxs, words_timestamp):    
  print(f"******** Inside get_gif_timestamps() **********")
  min_idx = min(giflist_indxs)
  max_idx = max(giflist_indxs)
  print(f"min_idx is :{min_idx}")
  print(f"max_idx is :{max_idx}")
  
  gif_words_timestamp = words_timestamp[min_idx : max_idx+1]
  print(f"words_timestamp is :{words_timestamp}")
  print(f"gif_words_timestamp is :{gif_words_timestamp}")
  
  start_seconds, end_seconds = gif_words_timestamp[0][0], gif_words_timestamp[-1][-1]
  print(f"start_seconds, end_seconds are :{start_seconds},{end_seconds}")
  
  return start_seconds, end_seconds


#extracting the  video and building and serving a .gif image
def gen_moviepy_gif(start_seconds, end_seconds):
  print("******** inside moviepy_gif () ***************")
  video_path = "./ShiaLaBeouf.mp4"
  video = mp.VideoFileClip(video_path) 
  final_clip = video.subclip(start_seconds, end_seconds)

  final_clip.write_gif("gifimage.gif") #, program='ffmpeg', tempfiles=True, fps=15, fuzz=3)
  final_clip.write_videofile("gifimage.mp4")
  final_clip.close()
  
  gif_img = mp.VideoFileClip("gifimage.gif")
  #gif_vid = mp.VideoFileClip("gifimage.mp4")
  #im = Image.open("gifimage.gif")
  #vid_cap = cv2.VideoCapture('gifimage.mp4')
  return "gifimage.gif" #im, gif_img, gif_vid, vid_cap,  #"gifimage.mp4"


sample_video = ['./ShiaLaBeouf.mp4']
sample_vid = gr.Video(label='Video file')  #for displaying the example
examples = gr.components.Dataset(components=[sample_vid], samples=[sample_video], type='values')


demo = gr.Blocks()

with demo:
    gr.Markdown("""This app is still a work in progress..""")
    with gr.Row():
        #for incoming video
        input_video = gr.Video(label="Upload a Video", visible=True)  
        #to generate and display transcriptions for input video
        text_transcript = gr.Textbox(label="Transcripts", lines = 10, interactive = True )
        
        def load_gif_text(text):
            print("****** inside load_gif_text() ******")
            print("text for gif is : ", text)
            return text
             
        text_transcript.change(load_gif_text, text_transcript, text_gif_transcript )
        
        #Just to move dgata between function hence keeping visible false
        text_words = gr.Textbox(visible=False)
        text_wordstimestamps = gr.Textbox(visible=False)
        
        #to copy paste required gif transcript / or to populate by itslef on pressing the button
        text_gif_transcript = gr.Textbox(label="Transcripts", placeholder="Copy paste transcripts here to create GIF image" , lines = 3, interactive = True ) 
        
        #to render video example on mouse hover/click        
        examples.render()
        #to load sample video into input_video upon clicking on it
        def load_examples(video):  
            print("****** inside load_example() ******")
            print("in_video is : ", video[0])
            return video[0]
        
        examples.click(load_examples, examples, input_video) 

    with gr.Row():
        button_transcript = gr.Button("Generate transcripts")
        button_gifs = gr.Button("Create Gif")
        
    with gr.Row():
        out_gif = gr.Image() 
        
    button_transcript.click(generate_transcripts, input_video, [text_transcript, text_words, text_wordstimestamps ])
    button_gifs.click(generate_gifs, [text_gif_transcript, text_words, text_wordstimestamps], out_gif )
    
   
demo.launch(debug=True)