Spaces:
Build error
Build error
File size: 8,829 Bytes
527d5e6 27f75e4 b0a9549 f79bf90 edaaf4f c3d46df 7dbd9b3 ad3ea9b e37d735 ad3ea9b b0a9549 527d5e6 8af272d 527d5e6 f09eeaa b0a9549 f09eeaa 28d279e f09eeaa 605e778 f09eeaa 28d279e 6010350 92daced 28d279e b69cb8c 92daced 8da8563 f09eeaa 28c97fa f09eeaa 4a2e5d1 f09eeaa 8da8563 7a4417c 8da8563 f09eeaa 527d5e6 b0a9549 527d5e6 b0a9549 527d5e6 f09eeaa 527d5e6 8f567e8 527d5e6 ffcd8ed 527d5e6 8f567e8 527d5e6 9ccc595 527d5e6 ef53b73 28c97fa 527d5e6 28c97fa 527d5e6 d10d751 28c97fa 527d5e6 28c97fa 527d5e6 7dbd9b3 1a39558 2a93029 8da8563 527d5e6 203beb3 ef53b73 cecb879 203beb3 ef53b73 8da8563 ef53b73 203beb3 f09eeaa fb66c76 f09eeaa ef53b73 f09eeaa ef53b73 f09eeaa ef53b73 f09eeaa 4940b1c f09eeaa 209d5da 8da8563 209d5da f09eeaa 849dabd f09eeaa e3a5cd7 4f08108 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import ffmpeg
from pathlib import Path
import os
import ast
import json
import base64
import requests
import moviepy.editor as mp
from PIL import Image, ImageSequence
import cv2
API_URL = "https://api-inference.huggingface.co/models/facebook/wav2vec2-base-960h"
headers = {"Authorization": "Bearer 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"}
#HF_TOKEN = os.environ["HF_TOKEN"]
#headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def generate_transcripts(in_video): #generate_gifs(in_video, gif_transcript):
print("********* Inside generate_transcripts() **********")
#convert video to audio
print(f" input video is : {in_video}")
video_path = Path("./ShiaLaBeouf.mp4")
audio_memory, _ = ffmpeg.input(video_path).output('-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
#Getting transcripts using wav2Vec2 huggingface hosted accelerated inference
#sending audio file in request along with stride and chunk length information
model_response = query_api(audio_memory)
#model response has both - transcripts as well as character timestamps or chunks
print(f"model_response is : {model_response}")
transcription = model_response["text"].lower()
chnk = model_response["chunks"]
#creating lists from chunks to consume downstream easily
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
for chunk in chnk]
#getting words and word timestamps
words, words_timestamp = get_word_timestamps(timestamps)
print(f"Total words in the audio transcript is:{len(words)}, transcript word list is :{words}, type of words is :{type(words)} ")
print(f"Total Word timestamps derived fromcharacter timestamp are :{len(words_timestamp)}, Word timestamps are :{words_timestamp}")
return transcription, words, words_timestamp
def generate_gifs(gif_transcript, words, words_timestamp):
print("********* Inside generate_gifs() **********")
#creating list from input gif transcript
#gif = "don't let your dreams be dreams"
gif = gif_transcript
#gif = gif_transcript
giflist = gif.split()
#getting gif indexes from the generator
# Converting string to list
words = ast.literal_eval(words)
words_timestamp = ast.literal_eval(words_timestamp)
print(f"words is :{words}")
print(f"type of words is :{type(words)}")
print(f"length of words is :{len(words)}")
print(f"giflist is :{giflist}")
giflist_indxs = list(list(get_gif_word_indexes(words, giflist))[0])
print(f"giflist_indxs is : {giflist_indxs}")
#getting start and end timestamps for a gif video
start_seconds, end_seconds = get_gif_timestamps(giflist_indxs, words_timestamp)
print(f"start_seconds, end_seconds are : ({start_seconds}, {end_seconds})")
#generated .gif image
gif_out = gen_moviepy_gif(start_seconds, end_seconds)
#im.save('./gifimage1.gif', save_all=True)
return gif_out
#calling the hosted model
def query_api(audio_bytes: bytes):
"""
Query for Huggingface Inference API for Automatic Speech Recognition task
"""
print("********* Inside query_api() **********")
payload = json.dumps({
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
"parameters": {
"return_timestamps": "char",
"chunk_length_s": 10,
"stride_length_s": [4, 2]
},
"options": {"use_gpu": False}
}).encode("utf-8")
response = requests.request(
"POST", API_URL, headers=headers, data=payload)
json_reponse = json.loads(response.content.decode("utf-8"))
print(f"json_reponse is :{json_reponse}")
return json_reponse
#getting word timestamps from character timestamps
def get_word_timestamps(timestamps):
words, word = [], []
letter_timestamp, word_timestamp, words_timestamp = [], [], []
for idx,entry in enumerate(timestamps):
word.append(entry[0])
letter_timestamp.append(entry[1])
if entry[0] == ' ':
words.append(''.join(word))
word_timestamp.append(letter_timestamp[0])
word_timestamp.append(timestamps[idx-1][2])
words_timestamp.append(word_timestamp)
word, word_timestamp, letter_timestamp = [], [], []
words = [word.strip() for word in words]
return words, words_timestamp
#getting index of gif words in main transcript
def get_gif_word_indexes(total_words_list, gif_words_list):
if not gif_words_list:
return
# just optimization
COUNT=0
lengthgif_words_list = len(gif_words_list)
firstgif_words_list = gif_words_list[0]
print(f"total_words_list is :{total_words_list}")
print(f"length of total_words_list is :{len(total_words_list)}")
print(f"gif_words_list is :{gif_words_list}")
print(f"length of gif_words_list is :{len(gif_words_list)}")
for idx, item in enumerate(total_words_list):
COUNT+=1
if item == firstgif_words_list:
if total_words_list[idx:idx+lengthgif_words_list] == gif_words_list:
print(f"value of tuple is : {tuple(range(idx, idx+lengthgif_words_list))}")
yield tuple(range(idx, idx+lengthgif_words_list))
#getting start and end timestamps for gif transcript
def get_gif_timestamps(giflist_indxs, words_timestamp):
print(f"******** Inside get_gif_timestamps() **********")
min_idx = min(giflist_indxs)
max_idx = max(giflist_indxs)
print(f"min_idx is :{min_idx}")
print(f"max_idx is :{max_idx}")
gif_words_timestamp = words_timestamp[min_idx : max_idx+1]
print(f"words_timestamp is :{words_timestamp}")
print(f"gif_words_timestamp is :{gif_words_timestamp}")
start_seconds, end_seconds = gif_words_timestamp[0][0], gif_words_timestamp[-1][-1]
print(f"start_seconds, end_seconds are :{start_seconds},{end_seconds}")
return start_seconds, end_seconds
#extracting the video and building and serving a .gif image
def gen_moviepy_gif(start_seconds, end_seconds):
print("******** inside moviepy_gif () ***************")
video_path = "./ShiaLaBeouf.mp4"
video = mp.VideoFileClip(video_path)
final_clip = video.subclip(start_seconds, end_seconds)
final_clip.write_gif("gifimage.gif") #, program='ffmpeg', tempfiles=True, fps=15, fuzz=3)
final_clip.write_videofile("gifimage.mp4")
final_clip.close()
gif_img = mp.VideoFileClip("gifimage.gif")
#gif_vid = mp.VideoFileClip("gifimage.mp4")
#im = Image.open("gifimage.gif")
#vid_cap = cv2.VideoCapture('gifimage.mp4')
return "gifimage.gif" #im, gif_img, gif_vid, vid_cap, #"gifimage.mp4"
sample_video = ['./ShiaLaBeouf.mp4']
sample_vid = gr.Video(label='Video file') #for displaying the example
examples = gr.components.Dataset(components=[sample_vid], samples=[sample_video], type='values')
demo = gr.Blocks()
with demo:
gr.Markdown("""This app is still a work in progress..""")
with gr.Row():
#for incoming video
input_video = gr.Video(label="Upload a Video", visible=True)
#to generate and display transcriptions for input video
text_transcript = gr.Textbox(label="Transcripts", lines = 10, interactive = True )
def load_gif_text(text):
print("****** inside load_gif_text() ******")
print("text for gif is : ", text)
return text
text_transcript.change(load_gif_text, text_transcript, text_gif_transcript )
#Just to move dgata between function hence keeping visible false
text_words = gr.Textbox(visible=False)
text_wordstimestamps = gr.Textbox(visible=False)
#to copy paste required gif transcript / or to populate by itslef on pressing the button
text_gif_transcript = gr.Textbox(label="Transcripts", placeholder="Copy paste transcripts here to create GIF image" , lines = 3, interactive = True )
#to render video example on mouse hover/click
examples.render()
#to load sample video into input_video upon clicking on it
def load_examples(video):
print("****** inside load_example() ******")
print("in_video is : ", video[0])
return video[0]
examples.click(load_examples, examples, input_video)
with gr.Row():
button_transcript = gr.Button("Generate transcripts")
button_gifs = gr.Button("Create Gif")
with gr.Row():
out_gif = gr.Image()
button_transcript.click(generate_transcripts, input_video, [text_transcript, text_words, text_wordstimestamps ])
button_gifs.click(generate_gifs, [text_gif_transcript, text_words, text_wordstimestamps], out_gif )
demo.launch(debug=True) |