Spaces:
Running
Running
File size: 1,977 Bytes
3fe1151 7fd17d1 3fe1151 293637a 9f992a7 293637a 9f992a7 293637a 9f992a7 293637a 9f992a7 293637a 0cdaffb 9f992a7 293637a 9f992a7 293637a 9f992a7 293637a 9f992a7 293637a 9f992a7 0cdaffb 293637a 0cdaffb 293637a 0cdaffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
from model import Model
DESCRIPTION = "# [CBNetV2](https://github.com/VDIGPKU/CBNetV2)"
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image", type="numpy")
with gr.Row():
detector_name = gr.Dropdown(
label="Detector", choices=list(model.models.keys()), value=model.model_name
)
with gr.Row():
detect_button = gr.Button("Detect")
detection_results = gr.State()
with gr.Column():
with gr.Row():
detection_visualization = gr.Image(label="Detection Result", type="numpy")
with gr.Row():
visualization_score_threshold = gr.Slider(
label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3
)
with gr.Row():
redraw_button = gr.Button("Redraw")
with gr.Row():
paths = sorted(pathlib.Path("images").rglob("*.jpg"))
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
detector_name.change(fn=model.set_model_name, inputs=detector_name)
detect_button.click(
fn=model.detect_and_visualize,
inputs=[
input_image,
visualization_score_threshold,
],
outputs=[
detection_results,
detection_visualization,
],
)
redraw_button.click(
fn=model.visualize_detection_results,
inputs=[
input_image,
detection_results,
visualization_score_threshold,
],
outputs=detection_visualization,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|