File size: 8,110 Bytes
bfa0d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python

from __future__ import annotations

import argparse
import os
import pickle
import sys
from typing import List, Tuple

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from model import Generator
from huggingface_hub import hf_hub_download

from moviepy.editor import *


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    return parser.parse_args()

cache_mp4_path = [f'/tmp/{str(i).zfill(2)}.mp4' for i in range(50)]
path_iter = iter(cache_mp4_path)

class App:
    '''
    Construct refer to https://huggingface.co/spaces/Gradio-Blocks/StyleGAN-Human
    '''
    def __init__(self, device: torch.device):
        self.device = device
        self.model = self.load_model()

    def load_model(self) -> nn.Module:
        path = hf_hub_download('HighCWu/anime-biggan-pytorch',
                               f'pytorch_model.bin')
        state_dict = torch.load(path, map_location='cpu')
        model = Generator(
            code_dim=140, n_class=1000, chn=96, 
            blocks_with_attention="B5", resolution=256
        )
        model.load_state_dict(state_dict)
        model.eval()
        model.to(self.device)
        with torch.inference_mode():
            z = torch.zeros((1, model.z_dim)).to(self.device)
            label = torch.zeros([1, model.c_dim], device=self.device)
            label[:,0] = 1
            model(z, label)
        return model

    def get_levels(self) -> List[str]:
        return [f'Level {i}' for i in range(self.model.n_level)]

    def generate_z_label(self, z_dim: int, c_dim: int, seed: int) -> Tuple[torch.Tensor, torch.Tensor]:
        rng = np.random.RandomState(seed)
        z = rng.randn(
            1, z_dim)
        label = rng.randint(0, c_dim, size=(1,))
        z = torch.from_numpy(z).to(self.device).float()
        label = torch.from_numpy(label).to(self.device).long()
        label = torch.nn.functional.one_hot(label, 1000).float()
        return z, label

    @torch.inference_mode()
    def generate_single_image(self, seed: int) -> np.ndarray:
        seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

        z, label = self.generate_z_label(self.model.z_dim, self.model.c_dim, seed)

        out = self.model(z, label)
        out = (out.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(
            torch.uint8)
        return out[0].cpu().numpy()

    @torch.inference_mode()
    def generate_interpolated_images(
            self, seed0: int, seed1: int,
            num_intermediate: int, levels: List[str]) -> List[np.ndarray]:
        seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
        seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
        levels = [int(level.split(' ')[1]) for level in levels]

        z0, label0 = self.generate_z_label(self.model.z_dim, self.model.c_dim, seed0)
        z1, label1 = self.generate_z_label(self.model.z_dim, self.model.c_dim, seed1)
        vec = z1 - z0
        dvec = vec / (num_intermediate + 1)
        zs = [z0 + dvec * i for i in range(num_intermediate + 2)]

        vec = label1 - label0
        dvec = vec / (num_intermediate + 1)
        labels = [label0 + dvec * i for i in range(num_intermediate + 2)]

        res = []
        for z, label in zip(zs, labels):
            z0_split = list(torch.chunk(z0, self.model.n_level, 1))
            z_split = list(torch.chunk(z, self.model.n_level, 1))
            for j in levels:
                z_split[j] = z0_split[j]
            z = torch.cat(z_split, 1)
            out = self.model(z, label)
            out = (out.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(
                torch.uint8)
            out = out[0].cpu().numpy()
            res.append(out)

        fps = 1 / (5 / len(res))
        video = ImageSequenceClip(res, fps=fps)
        global path_iter
        try:
            video_path = next(path_iter)
        except:
            path_iter = iter(cache_mp4_path)
            video_path = next(path_iter)
        video.write_videofile(video_path, fps=fps)
        
        return res, video_path


def main():
    args = parse_args()
    app = App(device=torch.device(args.device))

    with gr.Blocks(theme=args.theme) as demo:
        gr.Markdown('''<center><h1>Anime-BigGAN</h1></center>
This is a Gradio Blocks app of <a href="https://github.com/HighCWu/anime_biggan_toy">HighCWu/anime_biggan_toy in github</a>.
''')

        with gr.Row():
            with gr.Box():
                with gr.Column():
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                seed1 = gr.Number(value=128, label='Seed 1')
                            with gr.Row():
                                generate_button1 = gr.Button('Generate')
                            with gr.Row():
                                generated_image1 = gr.Image(type='numpy', shape=(256,256),
                                                            label='Generated Image 1')
                        with gr.Column():
                            with gr.Row():
                                seed2 = gr.Number(value=6886, label='Seed 2')
                            with gr.Row():
                                generate_button2 = gr.Button('Generate')
                            with gr.Row():
                                generated_image2 = gr.Image(type='numpy', shape=(256,256),
                                                            label='Generated Image 2')
                    
                    with gr.Row():
                        gr.Image(value='imgs/out1.png', type='filepath',
                                 interactive=False, label='Sample results 1')
                    with gr.Row():
                        gr.Image(value='imgs/out2.png', type='filepath',
                                 interactive=False, label='Sample results 2')
            
            with gr.Box():
                with gr.Column():
                    with gr.Row():
                        num_frames = gr.Slider(
                            0,
                            41,
                            value=7,
                            step=1,
                            label='Number of Intermediate Frames between image 1 and image 2')
                    with gr.Row():
                        level_choices = gr.CheckboxGroup(
                            choices=app.get_levels(),
                            label='Levels of latents to fix based on the first latent')
                    with gr.Row():
                        interpolate_button = gr.Button('Interpolate')

                    with gr.Row():
                        interpolated_images = gr.Gallery(label='Output Images')
                    with gr.Row():
                        interpolated_video = gr.Video(label='Output Video')

        gr.Markdown(
            '<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.anime-biggan" alt="visitor badge"/></center>'
        )

        generate_button1.click(app.generate_single_image,
                               inputs=[seed1],
                               outputs=generated_image1)
        generate_button2.click(app.generate_single_image,
                               inputs=[seed2],
                               outputs=generated_image2)
        interpolate_button.click(app.generate_interpolated_images,
                                 inputs=[seed1, seed2, num_frames, level_choices],
                                 outputs=[interpolated_images, interpolated_video])

    demo.launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()