Spaces:
Runtime error
Runtime error
File size: 8,110 Bytes
bfa0d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pickle
import sys
from typing import List, Tuple
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from model import Generator
from huggingface_hub import hf_hub_download
from moviepy.editor import *
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
cache_mp4_path = [f'/tmp/{str(i).zfill(2)}.mp4' for i in range(50)]
path_iter = iter(cache_mp4_path)
class App:
'''
Construct refer to https://huggingface.co/spaces/Gradio-Blocks/StyleGAN-Human
'''
def __init__(self, device: torch.device):
self.device = device
self.model = self.load_model()
def load_model(self) -> nn.Module:
path = hf_hub_download('HighCWu/anime-biggan-pytorch',
f'pytorch_model.bin')
state_dict = torch.load(path, map_location='cpu')
model = Generator(
code_dim=140, n_class=1000, chn=96,
blocks_with_attention="B5", resolution=256
)
model.load_state_dict(state_dict)
model.eval()
model.to(self.device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(self.device)
label = torch.zeros([1, model.c_dim], device=self.device)
label[:,0] = 1
model(z, label)
return model
def get_levels(self) -> List[str]:
return [f'Level {i}' for i in range(self.model.n_level)]
def generate_z_label(self, z_dim: int, c_dim: int, seed: int) -> Tuple[torch.Tensor, torch.Tensor]:
rng = np.random.RandomState(seed)
z = rng.randn(
1, z_dim)
label = rng.randint(0, c_dim, size=(1,))
z = torch.from_numpy(z).to(self.device).float()
label = torch.from_numpy(label).to(self.device).long()
label = torch.nn.functional.one_hot(label, 1000).float()
return z, label
@torch.inference_mode()
def generate_single_image(self, seed: int) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z, label = self.generate_z_label(self.model.z_dim, self.model.c_dim, seed)
out = self.model(z, label)
out = (out.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(
torch.uint8)
return out[0].cpu().numpy()
@torch.inference_mode()
def generate_interpolated_images(
self, seed0: int, seed1: int,
num_intermediate: int, levels: List[str]) -> List[np.ndarray]:
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
levels = [int(level.split(' ')[1]) for level in levels]
z0, label0 = self.generate_z_label(self.model.z_dim, self.model.c_dim, seed0)
z1, label1 = self.generate_z_label(self.model.z_dim, self.model.c_dim, seed1)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
vec = label1 - label0
dvec = vec / (num_intermediate + 1)
labels = [label0 + dvec * i for i in range(num_intermediate + 2)]
res = []
for z, label in zip(zs, labels):
z0_split = list(torch.chunk(z0, self.model.n_level, 1))
z_split = list(torch.chunk(z, self.model.n_level, 1))
for j in levels:
z_split[j] = z0_split[j]
z = torch.cat(z_split, 1)
out = self.model(z, label)
out = (out.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(
torch.uint8)
out = out[0].cpu().numpy()
res.append(out)
fps = 1 / (5 / len(res))
video = ImageSequenceClip(res, fps=fps)
global path_iter
try:
video_path = next(path_iter)
except:
path_iter = iter(cache_mp4_path)
video_path = next(path_iter)
video.write_videofile(video_path, fps=fps)
return res, video_path
def main():
args = parse_args()
app = App(device=torch.device(args.device))
with gr.Blocks(theme=args.theme) as demo:
gr.Markdown('''<center><h1>Anime-BigGAN</h1></center>
This is a Gradio Blocks app of <a href="https://github.com/HighCWu/anime_biggan_toy">HighCWu/anime_biggan_toy in github</a>.
''')
with gr.Row():
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
seed1 = gr.Number(value=128, label='Seed 1')
with gr.Row():
generate_button1 = gr.Button('Generate')
with gr.Row():
generated_image1 = gr.Image(type='numpy', shape=(256,256),
label='Generated Image 1')
with gr.Column():
with gr.Row():
seed2 = gr.Number(value=6886, label='Seed 2')
with gr.Row():
generate_button2 = gr.Button('Generate')
with gr.Row():
generated_image2 = gr.Image(type='numpy', shape=(256,256),
label='Generated Image 2')
with gr.Row():
gr.Image(value='imgs/out1.png', type='filepath',
interactive=False, label='Sample results 1')
with gr.Row():
gr.Image(value='imgs/out2.png', type='filepath',
interactive=False, label='Sample results 2')
with gr.Box():
with gr.Column():
with gr.Row():
num_frames = gr.Slider(
0,
41,
value=7,
step=1,
label='Number of Intermediate Frames between image 1 and image 2')
with gr.Row():
level_choices = gr.CheckboxGroup(
choices=app.get_levels(),
label='Levels of latents to fix based on the first latent')
with gr.Row():
interpolate_button = gr.Button('Interpolate')
with gr.Row():
interpolated_images = gr.Gallery(label='Output Images')
with gr.Row():
interpolated_video = gr.Video(label='Output Video')
gr.Markdown(
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.anime-biggan" alt="visitor badge"/></center>'
)
generate_button1.click(app.generate_single_image,
inputs=[seed1],
outputs=generated_image1)
generate_button2.click(app.generate_single_image,
inputs=[seed2],
outputs=generated_image2)
interpolate_button.click(app.generate_interpolated_images,
inputs=[seed1, seed2, num_frames, level_choices],
outputs=[interpolated_images, interpolated_video])
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|