Spaces:
Sleeping
Sleeping
File size: 12,153 Bytes
5adfc21 c38adc8 dc89944 5adfc21 2a52a09 5adfc21 4f17bbc 5adfc21 2715392 5adfc21 dc89944 5adfc21 2715392 5adfc21 81eba8e 5adfc21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
"""
Implementation of YOLOv3 architecture
"""
import os
import pytorch_lightning as pl
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from IPython.core.display import display
#from pl_bolts.datamodules import CIFAR10DataModule
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics.functional import accuracy
import torch.cuda.amp as amp
from torch.utils.data import DataLoader
from loss import YoloLoss
from pytorch_lightning import LightningModule, Trainer
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder
import torch.nn as nn
from dataset import YOLODataset
import config
import torch
import torch.optim as optim
import os
from model import YOLOv3
from tqdm import tqdm
from utils import (
mean_average_precision,
cells_to_bboxes,
get_evaluation_bboxes,
save_checkpoint,
load_checkpoint,
check_class_accuracy,
get_loaders,
plot_couple_examples
)
from loss import YoloLoss
import warnings
from pytorch_lightning import LightningModule
import torch
from loss import YoloLoss
import torch.nn as nn
import config
"""
Information about architecture config:
Tuple is structured by (filters, kernel_size, stride)
Every conv is a same convolution.
List is structured by "B" indicating a residual block followed by the number of repeats
"S" is for scale prediction block and computing the yolo loss
"U" is for upsampling the feature map and concatenating with a previous layer
"""
config_1 = [
(32, 3, 1),
(64, 3, 2),
["B", 1],
(128, 3, 2),
["B", 2],
(256, 3, 2),
["B", 8],
(512, 3, 2),
["B", 8],
(1024, 3, 2),
["B", 4], # To this point is Darknet-53
(512, 1, 1),
(1024, 3, 1),
"S",
(256, 1, 1),
"U",
(256, 1, 1),
(512, 3, 1),
"S",
(128, 1, 1),
"U",
(128, 1, 1),
(256, 3, 1),
"S",
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.leaky = nn.LeakyReLU(0.1)
self.use_bn_act = bn_act
def forward(self, x):
if self.use_bn_act:
return self.leaky(self.bn(self.conv(x)))
else:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels, use_residual=True, num_repeats=1):
super().__init__()
self.layers = nn.ModuleList()
for repeat in range(num_repeats):
self.layers += [
nn.Sequential(
CNNBlock(channels, channels // 2, kernel_size=1),
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
)
]
self.use_residual = use_residual
self.num_repeats = num_repeats
def forward(self, x):
for layer in self.layers:
if self.use_residual:
x = x + layer(x)
else:
x = layer(x)
return x
class ScalePrediction(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.pred = nn.Sequential(
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
CNNBlock(
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
),
)
self.num_classes = num_classes
def forward(self, x):
return (
self.pred(x)
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
.permute(0, 1, 3, 4, 2)
)
class YOLOv3(LightningModule):
def __init__(self, in_channels=3, num_classes=80):
super().__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.layers = self._create_conv_layers()
def forward(self, x):
outputs = [] # for each scale
route_connections = []
for layer in self.layers:
if isinstance(layer, ScalePrediction):
outputs.append(layer(x))
continue
x = layer(x)
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
route_connections.append(x)
elif isinstance(layer, nn.Upsample):
x = torch.cat([x, route_connections[-1]], dim=1)
route_connections.pop()
return outputs
def _create_conv_layers(self):
layers = nn.ModuleList()
in_channels = self.in_channels
for module in config_1:
if isinstance(module, tuple):
out_channels, kernel_size, stride = module
layers.append(
CNNBlock(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1 if kernel_size == 3 else 0,
)
)
in_channels = out_channels
elif isinstance(module, list):
num_repeats = module[1]
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
elif isinstance(module, str):
if module == "S":
layers += [
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
]
in_channels = in_channels // 2
elif module == "U":
layers.append(nn.Upsample(scale_factor=2),)
in_channels = in_channels * 3
return layers
class YoloVersion3(LightningModule):
def __init__(self):
super(YoloVersion3, self).__init__( )
self.save_hyperparameters()
# Set our init args as class attributes
self.learning_rate=config.LEARNING_RATE
#self.config=config
self.num_classes=config.NUM_CLASSES
self.train_csv=config.DATASET + "/train.csv"
self.test_csv=config.DATASET + "/test.csv"
self.loss_fn= YoloLoss()
self.scaler = amp.GradScaler()
#self.train_transform_function= config.train_transforms
#self.in_channels = 3
self.model= YOLOv3(num_classes=config.NUM_CLASSES).to(config.DEVICE)
self.scaled_anchors = (
torch.tensor(config.ANCHORS) * torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)).to(config.DEVICE)
#self.register_buffer("scaled_anchors", self.scaled_anchors)
self.training_step_outputs = []
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y0, y1, y2 = (
y[0],
y[1],
y[2],
)
out = self(x)
loss = (
self.loss_fn(out[0], y0, self.scaled_anchors[0])
+ self.loss_fn(out[1], y1, self.scaled_anchors[1])
+ self.loss_fn(out[2], y2, self.scaled_anchors[2])
)
self.log("train_loss", loss, on_epoch=True, prog_bar=True, logger=True) # Logging the training loss for visualization
self.training_step_outputs.append(loss)
return loss
def on_train_epoch_end(self):
print(f"\nCurrently epoch {self.current_epoch}")
train_epoch_average = torch.stack(self.training_step_outputs).mean()
self.training_step_outputs.clear()
print(f"Train loss {train_epoch_average}")
print("On Train Eval loader:")
print("On Train loader:")
class_accuracy, no_obj_accuracy, obj_accuracy = check_class_accuracy(self.model, self.train_loader, threshold=config.CONF_THRESHOLD)
self.log("class_accuracy", class_accuracy, on_epoch=True, prog_bar=True, logger=True)
self.log("no_obj_accuracy", no_obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
self.log("obj_accuracy", obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
if (self.current_epoch>0) and ((self.current_epoch+1) % 6 == 0): # for every 10 epochs we are plotting
plot_couple_examples(self.model, self.test_loader, 0.6, 0.5, self.scaled_anchors)
if (self.current_epoch>0) and (self.current_epoch+1 == self.trainer.max_epochs ): #map calculation across last epoch
check_class_accuracy(self.model, self.test_loader, threshold=config.CONF_THRESHOLD)
pred_boxes, true_boxes = get_evaluation_bboxes(
self.test_loader,
self.model,
iou_threshold=config.NMS_IOU_THRESH,
anchors=config.ANCHORS,
threshold=config.CONF_THRESHOLD,
)
mapval = mean_average_precision(
pred_boxes,
true_boxes,
iou_threshold=config.MAP_IOU_THRESH,
box_format="midpoint",
num_classes=config.NUM_CLASSES,
)
print(f"MAP: {mapval.item()}")
self.log("MAP", mapval.item(), on_epoch=True, prog_bar=True, logger=True)
def configure_optimizers(self):
optimizer = optim.Adam(
self.parameters(),
lr=config.LEARNING_RATE,
weight_decay=config.WEIGHT_DECAY,
)
self.trainer.fit_loop.setup_data()
dataloader = self.trainer.train_dataloader
EPOCHS = config.NUM_EPOCHS # 40 % of number of epochs
lr_scheduler = OneCycleLR(
optimizer,
max_lr=1E-3,
steps_per_epoch=len(dataloader),
epochs=EPOCHS,
pct_start=5/EPOCHS,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy='linear'
)
scheduler = {"scheduler": lr_scheduler, "interval" : "step"}
return [optimizer]
def setup(self, stage=None):
self.train_loader, self.test_loader, self.train_eval_loader = get_loaders(
train_csv_path=self.train_csv,
test_csv_path=self.test_csv,
)
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.train_eval_loader
def test_dataloader(self):
return self.test_loader
# if __name__ == "__main__":
# model = YoloVersion3()
# checkpoint = ModelCheckpoint(filename='last_epoch', save_last=True)
# lr_rate_monitor = LearningRateMonitor(logging_interval="epoch")
# trainer = pl.Trainer(
# max_epochs=config.NUM_EPOCHS,
# deterministic=True,
# logger=True,
# default_root_dir="/content/drive/MyDrive/sunandini/Checkpoint/",
# callbacks=[lr_rate_monitor],
# enable_model_summary=False,
# log_every_n_steps=1,
# precision="16-mixed"
# )
# print("---- Training Started ---- Sunandini ----")
# trainer.fit(model)
# torch.save(model.state_dict(), 'YOLOv3.pth')
if __name__ == "__main__":
num_classes = 20
IMAGE_SIZE = 416
model = YOLOv3(num_classes=num_classes)
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
out = model(x)
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
print("Success!") |