File size: 7,135 Bytes
0afe8bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
"""

import config
import numpy as np
import os
import pandas as pd
import torch
from utils import xywhn2xyxy, xyxy2xywhn
import random 

from PIL import Image, ImageFile
from torch.utils.data import Dataset, DataLoader
from utils import (
    cells_to_bboxes,
    iou_width_height as iou,
    non_max_suppression as nms,
    plot_image
)

ImageFile.LOAD_TRUNCATED_IMAGES = True

class YOLODataset(Dataset):
    def __init__(
        self,
        csv_file,
        img_dir,
        label_dir,
        anchors,
        image_size=416,
        S=[13, 26, 52],
        C=20,
        transform=None,
    ):
        self.annotations = pd.read_csv(csv_file)
        self.img_dir = img_dir
        self.label_dir = label_dir
        self.image_size = image_size
        self.mosaic_border = [image_size // 2, image_size // 2]
        self.transform = transform
        self.S = S
        self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2])  # for all 3 scales
        self.num_anchors = self.anchors.shape[0]
        self.num_anchors_per_scale = self.num_anchors // 3
        self.C = C
        self.ignore_iou_thresh = 0.5

    def __len__(self):
        return len(self.annotations)
    
    def load_mosaic(self, index):
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4 = []
        s = self.image_size
        yc, xc = (int(random.uniform(x, 2 * s - x)) for x in self.mosaic_border)  # mosaic center x, y
        indices = [index] + random.choices(range(len(self)), k=3)  # 3 additional image indices
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image
            label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
            bboxes = np.roll(np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1).tolist()
            img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
            img = np.array(Image.open(img_path).convert("RGB"))
            

            h, w = img.shape[0], img.shape[1]
            labels = np.array(bboxes)

            # place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            if labels.size:
                labels[:, :-1] = xywhn2xyxy(labels[:, :-1], w, h, padw, padh)  # normalized xywh to pixel xyxy format
            labels4.append(labels)

        # Concat/clip labels
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, :-1],):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate
        labels4[:, :-1] = xyxy2xywhn(labels4[:, :-1], 2 * s, 2 * s)
        labels4[:, :-1] = np.clip(labels4[:, :-1], 0, 1)
        labels4 = labels4[labels4[:, 2] > 0]
        labels4 = labels4[labels4[:, 3] > 0]
        return img4, labels4 

    def __getitem__(self, index):

        image, bboxes = self.load_mosaic(index)

        if self.transform:
            augmentations = self.transform(image=image, bboxes=bboxes)
            image = augmentations["image"]
            bboxes = augmentations["bboxes"]

        # Below assumes 3 scale predictions (as paper) and same num of anchors per scale
        targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
        for box in bboxes:
            iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
            anchor_indices = iou_anchors.argsort(descending=True, dim=0)
            x, y, width, height, class_label = box
            has_anchor = [False] * 3  # each scale should have one anchor
            for anchor_idx in anchor_indices:
                scale_idx = anchor_idx // self.num_anchors_per_scale
                anchor_on_scale = anchor_idx % self.num_anchors_per_scale
                S = self.S[scale_idx]
                i, j = int(S * y), int(S * x)  # which cell
                anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
                if not anchor_taken and not has_anchor[scale_idx]:
                    targets[scale_idx][anchor_on_scale, i, j, 0] = 1
                    x_cell, y_cell = S * x - j, S * y - i  # both between [0,1]
                    width_cell, height_cell = (
                        width * S,
                        height * S,
                    )  # can be greater than 1 since it's relative to cell
                    box_coordinates = torch.tensor(
                        [x_cell, y_cell, width_cell, height_cell]
                    )
                    targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
                    targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
                    has_anchor[scale_idx] = True

                elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
                    targets[scale_idx][anchor_on_scale, i, j, 0] = -1  # ignore prediction

        return image, tuple(targets)


def test():
    anchors = config.ANCHORS

    transform = config.test_transforms

    dataset = YOLODataset(
        "COCO/train.csv",
        "COCO/images/images/",
        "COCO/labels/labels_new/",
        S=[13, 26, 52],
        anchors=anchors,
        transform=transform,
    )
    S = [13, 26, 52]
    scaled_anchors = torch.tensor(anchors) / (
        1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
    )
    loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
    for x, y in loader:
        boxes = []

        for i in range(y[0].shape[1]):
            anchor = scaled_anchors[i]
            print(anchor.shape)
            print(y[i].shape)
            boxes += cells_to_bboxes(
                y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
            )[0]
        boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
        print(boxes)
        plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)


if __name__ == "__main__":
    test()