Spaces:
Sleeping
Sleeping
File size: 20,544 Bytes
eae1d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import config
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import os
import random
import torch
from collections import Counter
from torch.utils.data import DataLoader
from tqdm import tqdm
def iou_width_height(boxes1, boxes2):
"""
Parameters:
boxes1 (tensor): width and height of the first bounding boxes
boxes2 (tensor): width and height of the second bounding boxes
Returns:
tensor: Intersection over union of the corresponding boxes
"""
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
boxes1[..., 1], boxes2[..., 1]
)
union = (
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
)
return intersection / union
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
"""
Video explanation of this function:
https://youtu.be/XXYG5ZWtjj0
This function calculates intersection over union (iou) given pred boxes
and target boxes.
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
"""
if box_format == "midpoint":
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
if box_format == "corners":
box1_x1 = boxes_preds[..., 0:1]
box1_y1 = boxes_preds[..., 1:2]
box1_x2 = boxes_preds[..., 2:3]
box1_y2 = boxes_preds[..., 3:4]
box2_x1 = boxes_labels[..., 0:1]
box2_y1 = boxes_labels[..., 1:2]
box2_x2 = boxes_labels[..., 2:3]
box2_y2 = boxes_labels[..., 3:4]
x1 = torch.max(box1_x1, box2_x1)
y1 = torch.max(box1_y1, box2_y1)
x2 = torch.min(box1_x2, box2_x2)
y2 = torch.min(box1_y2, box2_y2)
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
return intersection / (box1_area + box2_area - intersection + 1e-6)
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
"""
Video explanation of this function:
https://youtu.be/YDkjWEN8jNA
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
"""
assert type(bboxes) == list
bboxes = [box for box in bboxes if box[1] > threshold]
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
bboxes_after_nms = []
while bboxes:
chosen_box = bboxes.pop(0)
bboxes = [
box
for box in bboxes
if box[0] != chosen_box[0]
or intersection_over_union(
torch.tensor(chosen_box[2:]),
torch.tensor(box[2:]),
box_format=box_format,
)
< iou_threshold
]
bboxes_after_nms.append(chosen_box)
return bboxes_after_nms
def mean_average_precision(
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
"""
Video explanation of this function:
https://youtu.be/FppOzcDvaDI
This function calculates mean average precision (mAP)
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
"""
# list storing all AP for respective classes
average_precisions = []
# used for numerical stability later on
epsilon = 1e-6
for c in range(num_classes):
detections = []
ground_truths = []
# Go through all predictions and targets,
# and only add the ones that belong to the
# current class c
for detection in pred_boxes:
if detection[1] == c:
detections.append(detection)
for true_box in true_boxes:
if true_box[1] == c:
ground_truths.append(true_box)
# find the amount of bboxes for each training example
# Counter here finds how many ground truth bboxes we get
# for each training example, so let's say img 0 has 3,
# img 1 has 5 then we will obtain a dictionary with:
# amount_bboxes = {0:3, 1:5}
amount_bboxes = Counter([gt[0] for gt in ground_truths])
# We then go through each key, val in this dictionary
# and convert to the following (w.r.t same example):
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
for key, val in amount_bboxes.items():
amount_bboxes[key] = torch.zeros(val)
# sort by box probabilities which is index 2
detections.sort(key=lambda x: x[2], reverse=True)
TP = torch.zeros((len(detections)))
FP = torch.zeros((len(detections)))
total_true_bboxes = len(ground_truths)
# If none exists for this class then we can safely skip
if total_true_bboxes == 0:
continue
for detection_idx, detection in enumerate(detections):
# Only take out the ground_truths that have the same
# training idx as detection
ground_truth_img = [
bbox for bbox in ground_truths if bbox[0] == detection[0]
]
num_gts = len(ground_truth_img)
best_iou = 0
for idx, gt in enumerate(ground_truth_img):
iou = intersection_over_union(
torch.tensor(detection[3:]),
torch.tensor(gt[3:]),
box_format=box_format,
)
if iou > best_iou:
best_iou = iou
best_gt_idx = idx
if best_iou > iou_threshold:
# only detect ground truth detection once
if amount_bboxes[detection[0]][best_gt_idx] == 0:
# true positive and add this bounding box to seen
TP[detection_idx] = 1
amount_bboxes[detection[0]][best_gt_idx] = 1
else:
FP[detection_idx] = 1
# if IOU is lower then the detection is a false positive
else:
FP[detection_idx] = 1
TP_cumsum = torch.cumsum(TP, dim=0)
FP_cumsum = torch.cumsum(FP, dim=0)
recalls = TP_cumsum / (total_true_bboxes + epsilon)
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
precisions = torch.cat((torch.tensor([1]), precisions))
recalls = torch.cat((torch.tensor([0]), recalls))
# torch.trapz for numerical integration
average_precisions.append(torch.trapz(precisions, recalls))
return sum(average_precisions) / len(average_precisions)
def plot_image(image, boxes):
"""Plots predicted bounding boxes on the image"""
cmap = plt.get_cmap("tab20b")
class_labels = config.COCO_LABELS if config.DATASET=='COCO' else config.PASCAL_CLASSES
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
im = np.array(image)
height, width, _ = im.shape
# Create figure and axes
fig, ax = plt.subplots(1)
# Display the image
ax.imshow(im)
# box[0] is x midpoint, box[2] is width
# box[1] is y midpoint, box[3] is height
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=2,
edgecolor=colors[int(class_pred)],
facecolor="none",
)
# Add the patch to the Axes
ax.add_patch(rect)
plt.text(
upper_left_x * width,
upper_left_y * height,
s=class_labels[int(class_pred)],
color="white",
verticalalignment="top",
bbox={"color": colors[int(class_pred)], "pad": 0},
)
plt.show()
def get_evaluation_bboxes(
loader,
model,
iou_threshold,
anchors,
threshold,
box_format="midpoint",
device="cuda",
):
# make sure model is in eval before get bboxes
model.eval()
train_idx = 0
all_pred_boxes = []
all_true_boxes = []
for batch_idx, (x, labels) in enumerate(loader):
x = x.to(device)
with torch.no_grad():
predictions = model(x)
batch_size = x.shape[0]
bboxes = [[] for _ in range(batch_size)]
for i in range(3):
S = predictions[i].shape[2]
anchor = torch.tensor([*anchors[i]]).to(device) * S
boxes_scale_i = cells_to_bboxes(
predictions[i], anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
# we just want one bbox for each label, not one for each scale
true_bboxes = cells_to_bboxes(
labels[2], anchor, S=S, is_preds=False
)
for idx in range(batch_size):
nms_boxes = non_max_suppression(
bboxes[idx],
iou_threshold=iou_threshold,
threshold=threshold,
box_format=box_format,
)
for nms_box in nms_boxes:
all_pred_boxes.append([train_idx] + nms_box)
for box in true_bboxes[idx]:
if box[1] > threshold:
all_true_boxes.append([train_idx] + box)
train_idx += 1
model.train()
return all_pred_boxes, all_true_boxes
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
"""
Scales the predictions coming from the model to
be relative to the entire image such that they for example later
can be plotted or.
INPUT:
predictions: tensor of size (N, 3, S, S, num_classes+5)
anchors: the anchors used for the predictions
S: the number of cells the image is divided in on the width (and height)
is_preds: whether the input is predictions or the true bounding boxes
OUTPUT:
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
object score, bounding box coordinates
"""
BATCH_SIZE = predictions.shape[0]
num_anchors = len(anchors)
box_predictions = predictions[..., 1:5]
if is_preds:
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
scores = torch.sigmoid(predictions[..., 0:1])
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
else:
scores = predictions[..., 0:1]
best_class = predictions[..., 5:6]
cell_indices = (
torch.arange(S)
.repeat(predictions.shape[0], 3, S, 1)
.unsqueeze(-1)
.to(predictions.device)
)
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
w_h = 1 / S * box_predictions[..., 2:4]
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
return converted_bboxes.tolist()
def check_class_accuracy(model, loader, threshold):
model.eval()
tot_class_preds, correct_class = 0, 0
tot_noobj, correct_noobj = 0, 0
tot_obj, correct_obj = 0, 0
for idx, (x, y) in enumerate(loader):
x = x.to(config.DEVICE)
with torch.no_grad():
out = model(x)
for i in range(3):
y[i] = y[i].to(config.DEVICE)
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
correct_class += torch.sum(
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
)
tot_class_preds += torch.sum(obj)
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
tot_obj += torch.sum(obj)
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
tot_noobj += torch.sum(noobj)
print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%")
print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%")
print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%")
model.train()
return (correct_class/(tot_class_preds+1e-16))*100, (correct_noobj/(tot_noobj+1e-16))*100, (correct_obj/(tot_obj+1e-16))*100
def get_mean_std(loader):
# var[X] = E[X**2] - E[X]**2
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
for data, _ in loader:
channels_sum += torch.mean(data, dim=[0, 2, 3])
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
num_batches += 1
mean = channels_sum / num_batches
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
return mean, std
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, filename)
def load_checkpoint(checkpoint_file, model, optimizer, lr):
print("=> Loading checkpoint")
checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
# If we don't do this then it will just have learning rate of old checkpoint
# and it will lead to many hours of debugging \:
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def get_loaders(train_csv_path, test_csv_path):
from dataset import YOLODataset
IMAGE_SIZE = config.IMAGE_SIZE
train_dataset = YOLODataset(
train_csv_path,
transform=config.train_transforms,
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
img_dir=config.IMG_DIR,
label_dir=config.LABEL_DIR,
anchors=config.ANCHORS,
)
test_dataset = YOLODataset(
test_csv_path,
transform=config.test_transforms,
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
img_dir=config.IMG_DIR,
label_dir=config.LABEL_DIR,
anchors=config.ANCHORS,
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
pin_memory=config.PIN_MEMORY,
shuffle=True,
drop_last=False,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
pin_memory=config.PIN_MEMORY,
shuffle=False,
drop_last=False,
)
train_eval_dataset = YOLODataset(
train_csv_path,
transform=config.test_transforms,
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
img_dir=config.IMG_DIR,
label_dir=config.LABEL_DIR,
anchors=config.ANCHORS,
)
train_eval_loader = DataLoader(
dataset=train_eval_dataset,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
pin_memory=config.PIN_MEMORY,
shuffle=False,
drop_last=False,
)
return train_loader, test_loader, train_eval_loader
def plot_couple_examples(model, loader, thresh, iou_thresh, anchors):
model.eval()
x, y = next(iter(loader))
x = x.to("cuda")
with torch.no_grad():
out = model(x)
bboxes = [[] for _ in range(x.shape[0])]
for i in range(3):
batch_size, A, S, _, _ = out[i].shape
anchor = anchors[i]
boxes_scale_i = cells_to_bboxes(
out[i], anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
model.train()
for i in range(batch_size//4):
nms_boxes = non_max_suppression(
bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
)
plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes)
def seed_everything(seed=42):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def clip_coords(boxes, img_shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
return y
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * x[..., 0] + padw # top left x
y[..., 1] = h * x[..., 1] + padh # top left y
return y
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
if clip:
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
return y
def clip_boxes(boxes, shape):
# Clip boxes (xyxy) to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[..., 0].clamp_(0, shape[1]) # x1
boxes[..., 1].clamp_(0, shape[0]) # y1
boxes[..., 2].clamp_(0, shape[1]) # x2
boxes[..., 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|