File size: 1,415 Bytes
9f2b3ad
 
 
 
 
 
 
66ec0c6
9f2b3ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c44234
 
 
53e5c1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
import torch
import torchvision
import numpy as np
from PIL import Image

# Load model weights
model = torch.hub.load('ultralytics/yolov5:v6.2', 'custom', "model_weights/datasets_1000_41class.pt")

# Define a yolo prediction function
def yolo(im, size=640):
    g = (size / max(im.size))  # gain
    im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS)  # resize

    results = model(im)  # inference
    results.render()  # updates results.imgs with boxes and labels
    return Image.fromarray(results.imgs[0])


inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")

title = "BandiCount: Detecting Australian native animal species"
description = "BandiCount: Detecting Australian native animal species in NSW national parks, using object detection. Upload an image or click an example image to use."
article = ""

examples = [['data/baby_wombat.jpg'], ['data/lyrebird2.jpg'],['data/echidna.gif'], ['data/pademelon.jpg'], ['data/kookaburras.jpg'], \
    ['data/Bandicoot.jpg'], ['data/BrushtailPossum.jpg'], ['data/Macropod.jpg'],  ['data/cat.jpg'], ['data/dingo.jpg'],\
     ['data/fox.jpg'], ['data/goats.jpg'], ['data/quoll.jpg'],['data/bush_turkey.jpg']]
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)