File size: 15,175 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from __future__ import absolute_import, division, print_function, unicode_literals

import math
import sys

import cv2
import numpy as np
import six


class DecodeImage(object):
    """decode image"""

    def __init__(
        self, img_mode="RGB", channel_first=False, ignore_orientation=False, **kwargs
    ):
        self.img_mode = img_mode
        self.channel_first = channel_first
        self.ignore_orientation = ignore_orientation

    def __call__(self, data):
        img = data["image"]
        if six.PY2:
            assert (
                type(img) is str and len(img) > 0
            ), "invalid input 'img' in DecodeImage"
        else:
            assert (
                type(img) is bytes and len(img) > 0
            ), "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype="uint8")
        if self.ignore_orientation:
            img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
        if img is None:
            return None
        if self.img_mode == "GRAY":
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == "RGB":
            assert img.shape[2] == 3, "invalid shape of image[%s]" % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data["image"] = img
        return data


class NRTRDecodeImage(object):
    """decode image"""

    def __init__(self, img_mode="RGB", channel_first=False, **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data["image"]
        if six.PY2:
            assert (
                type(img) is str and len(img) > 0
            ), "invalid input 'img' in DecodeImage"
        else:
            assert (
                type(img) is bytes and len(img) > 0
            ), "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype="uint8")

        img = cv2.imdecode(img, 1)

        if img is None:
            return None
        if self.img_mode == "GRAY":
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == "RGB":
            assert img.shape[2] == 3, "invalid shape of image[%s]" % (img.shape)
            img = img[:, :, ::-1]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data["image"] = img
        return data


class NormalizeImage(object):
    """normalize image such as substract mean, divide std"""

    def __init__(self, scale=None, mean=None, std=None, order="chw", **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == "chw" else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype("float32")
        self.std = np.array(std).reshape(shape).astype("float32")

    def __call__(self, data):
        img = data["image"]
        from PIL import Image

        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage"
        data["image"] = (img.astype("float32") * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """convert hwc image to chw image"""

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data["image"]
        from PIL import Image

        if isinstance(img, Image.Image):
            img = np.array(img)
        data["image"] = img.transpose((2, 0, 1))
        return data


class Fasttext(object):
    def __init__(self, path="None", **kwargs):
        import fasttext

        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data["label"]
        fast_label = self.fast_model[label]
        data["fast_label"] = fast_label
        return data


class KeepKeys(object):
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


class Pad(object):
    def __init__(self, size=None, size_div=32, **kwargs):
        if size is not None and not isinstance(size, (int, list, tuple)):
            raise TypeError(
                "Type of target_size is invalid. Now is {}".format(type(size))
            )
        if isinstance(size, int):
            size = [size, size]
        self.size = size
        self.size_div = size_div

    def __call__(self, data):

        img = data["image"]
        img_h, img_w = img.shape[0], img.shape[1]
        if self.size:
            resize_h2, resize_w2 = self.size
            assert (
                img_h < resize_h2 and img_w < resize_w2
            ), "(h, w) of target size should be greater than (img_h, img_w)"
        else:
            resize_h2 = max(
                int(math.ceil(img.shape[0] / self.size_div) * self.size_div),
                self.size_div,
            )
            resize_w2 = max(
                int(math.ceil(img.shape[1] / self.size_div) * self.size_div),
                self.size_div,
            )
        img = cv2.copyMakeBorder(
            img,
            0,
            resize_h2 - img_h,
            0,
            resize_w2 - img_w,
            cv2.BORDER_CONSTANT,
            value=0,
        )
        data["image"] = img
        return data


class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data["image"]
        if "polys" in data:
            text_polys = data["polys"]

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
        if "polys" in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data["polys"] = np.array(new_boxes, dtype=np.float32)
        data["image"] = img_resize
        return data


class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if "image_shape" in kwargs:
            self.image_shape = kwargs["image_shape"]
            self.resize_type = 1
        elif "limit_side_len" in kwargs:
            self.limit_side_len = kwargs["limit_side_len"]
            self.limit_type = kwargs.get("limit_type", "min")
        elif "resize_long" in kwargs:
            self.resize_type = 2
            self.resize_long = kwargs.get("resize_long", 960)
        else:
            self.limit_side_len = 736
            self.limit_type = "min"

    def __call__(self, data):
        img = data["image"]
        src_h, src_w, _ = img.shape

        if self.resize_type == 0:
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
        else:
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
        data["image"] = img
        data["shape"] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
        h, w, c = img.shape

        # limit the max side
        if self.limit_type == "max":
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.0
        elif self.limit_type == "min":
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.0
        elif self.limit_type == "resize_long":
            ratio = float(limit_side_len) / max(h, w)
        else:
            raise Exception("not support limit type, image ")
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]

    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs["max_side_len"]
        self.valid_set = kwargs["valid_set"]

    def __call__(self, data):
        img = data["image"]
        src_h, src_w, _ = img.shape
        if self.valid_set == "totaltext":
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len
            )
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len
            )
        data["image"] = im_resized
        data["shape"] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

        h, w, _ = im.shape
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs["img_scale"][0], kwargs["img_scale"][1]

    def __call__(self, data):
        img = data["image"]
        points = data["points"]
        src_h, src_w, _ = img.shape
        (
            im_resized,
            scale_factor,
            [ratio_h, ratio_w],
            [new_h, new_w],
        ) = self.resize_image(img)
        resize_points = self.resize_boxes(img, points, scale_factor)
        data["ori_image"] = img
        data["ori_boxes"] = points
        data["points"] = resize_points
        data["image"] = im_resized
        data["shape"] = np.array([new_h, new_w])
        return data

    def resize_image(self, img):
        norm_img = np.zeros([1024, 1024, 3], dtype="float32")
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(
            h * float(scale_factor) + 0.5
        )
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points