Spaces:
Running
Running
File size: 5,530 Bytes
3be4504 e97a3af 3be4504 c171781 3be4504 a8eed7c 3be4504 a8eed7c 3be4504 c171781 3be4504 4122a8f 3be4504 24d0b21 3be4504 a858144 3be4504 472f4dc 3be4504 c6aba46 3be4504 c6aba46 3be4504 78f5453 a858144 3be4504 a858144 3be4504 a858144 3be4504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
from langchain_core.prompts import ChatPromptTemplate
from langsmith import Client, traceable
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langsmith import Client, traceable
from langchain_core.output_parsers import StrOutputParser
from langchain_nomic.embeddings import NomicEmbeddings
from langchain_groq import ChatGroq
from dotenv import load_dotenv
load_dotenv()
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
HF_API_KEY = os.getenv("HF_API_KEY")
#LANGSMITH_TRACING="true"
#LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
#LANGSMITH_API_KEY=os.getenv("LANGSMITH_API_KEY")
#LANGSMITH_PROJECT="pr-internal-hand-91"
model_name="llama-3.1-70b-versatile"
llm = ChatGroq(
temperature=0,
model= "llama-3.3-70b-versatile", #"llama3-70b-8192",
api_key=GROQ_API_KEY,
verbose= True,
max_retries=2,
)
#@traceable
def get_answer(question):
prompt = ChatPromptTemplate.from_messages([
("system", "You are a hydroponic AI assistant answer questions of the user with details and here is some facts about the hydroponic farming: {facts}"),
("user", "{question}")
])
chain = prompt | llm
parser = StrOutputParser()
chain = prompt | llm | parser
answer= chain.invoke({"question": question, "facts": fake_db_retrieval()})
return answer
embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
db = "tomato1"
from langchain.vectorstores import Chroma
vector_store = Chroma(
collection_name="chromadb3",
persist_directory=db,
embedding_function=embedding_model,
)
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.chains import RetrievalQA
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=5, #Number of messages stored in memory
return_messages=True #Must return the messages in the response.
)
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(k=5)
)
from langchain.agents import Tool
#Defining the list of tool objects to be used by LangChain.
tools = [
Tool(
name='Hydroponic Knowledge database',
func=qa.run,
description=(
'use this tool when answering Hydroponic knowledge queries to get '
'more information about the topic but if you dont know or it is not mentioned in the database do not say I can try to provide some general information just say what you know as if you know it from the knowledge database'
)
)
]
from langchain.agents import create_react_agent
from langchain import hub
prompt = hub.pull("hwchase17/react-chat")
agent = create_react_agent(
tools=tools,
llm=llm,
prompt=prompt,
)
# Create an agent executor by passing in the agent and tools
from langchain.agents import AgentExecutor
agent_executor = AgentExecutor(agent=agent,
tools=tools,
verbose=True,
memory=conversational_memory,
max_iterations=30,
max_execution_time=600,
#early_stopping_method='generate',
handle_parsing_errors=True
)
# Function for continuing the conversation
import streamlit as st
# Function for continuing the conversation
def continue_conversation(input, history):
# Invoke the agent and get the response
response = agent_executor.invoke({"input": input})
output = response['output']
# Prepend the new input and output to the history (latest conversation comes first)
history.insert(0, {"role": "Agricultor", "message": input})
history.insert(0, {"role": "Hydroponic Agent", "message": output})
# Return the current response and the full history (hidden state)
return output, history
# Streamlit UI
def main():
st.set_page_config(page_title="Hydroponic AI Agent", page_icon="👨⚕️")
st.title("Hydroponic AI Agent")
# Initialize the conversation history
if 'history' not in st.session_state:
st.session_state.history = []
# Sidebar for memory display
with st.sidebar:
st.header("Conversation History")
st.write("This section contains the conversation history.")
# Create a container for the chat
chat_container = st.container()
# Display the chat history with the latest conversation at the top
for chat in st.session_state.history:
if chat['role'] == 'Agricultor':
chat_container.markdown(f"**Agricultor:** {chat['message']}")
else:
chat_container.markdown(f"**Hydroponic AI Assistant:** {chat['message']}")
# User input text box at the bottom
user_input = st.text_input("Ask a question:", key="input", placeholder="Tell me what do you want to know ?")
if user_input:
# Get the response and update the conversation history
output, updated_history = continue_conversation(user_input, st.session_state.history)
# Update the session state with the new history
st.session_state.history = updated_history
# Display memory of past conversation in an expandable section
with st.expander("Memory", expanded=True):
for chat in st.session_state.history:
st.write(f"**{chat['role']}:** {chat['message']}")
if __name__ == "__main__":
main()
|