File size: 5,530 Bytes
3be4504
 
 
 
 
 
 
 
 
 
 
e97a3af
3be4504
 
 
 
 
 
 
 
c171781
 
 
 
3be4504
 
 
 
a8eed7c
3be4504
a8eed7c
 
 
3be4504
 
 
 
c171781
3be4504
 
 
4122a8f
3be4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d0b21
3be4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a858144
3be4504
 
472f4dc
 
3be4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6aba46
 
3be4504
 
 
 
 
 
c6aba46
 
3be4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78f5453
a858144
3be4504
a858144
3be4504
 
a858144
3be4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os 

from langchain_core.prompts import ChatPromptTemplate
from langsmith import Client, traceable
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langsmith import Client, traceable
from langchain_core.output_parsers import StrOutputParser

from langchain_nomic.embeddings import NomicEmbeddings
from langchain_groq import ChatGroq
from dotenv import load_dotenv

load_dotenv()

GROQ_API_KEY = os.getenv('GROQ_API_KEY')
HF_API_KEY = os.getenv("HF_API_KEY")



#LANGSMITH_TRACING="true"
#LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
#LANGSMITH_API_KEY=os.getenv("LANGSMITH_API_KEY")
#LANGSMITH_PROJECT="pr-internal-hand-91"

model_name="llama-3.1-70b-versatile"
llm = ChatGroq(
    temperature=0,
    model= "llama-3.3-70b-versatile", #"llama3-70b-8192",
    api_key=GROQ_API_KEY,
    verbose= True,
    max_retries=2,


)


#@traceable
def get_answer(question):

  prompt = ChatPromptTemplate.from_messages([
      ("system", "You are a hydroponic AI assistant answer questions of the user with details and here is some facts about the hydroponic farming: {facts}"),
      ("user", "{question}")
  ])

  chain = prompt | llm

  parser = StrOutputParser()

  chain = prompt | llm | parser

  answer= chain.invoke({"question": question, "facts": fake_db_retrieval()})
  return answer





embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
db = "tomato1"
from langchain.vectorstores import Chroma

vector_store = Chroma(
    collection_name="chromadb3",
    persist_directory=db,
    embedding_function=embedding_model,
)

from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.chains import RetrievalQA

conversational_memory = ConversationBufferWindowMemory(
    memory_key='chat_history',
    k=5, #Number of messages stored in memory
    return_messages=True #Must return the messages in the response.
)

qa = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=vector_store.as_retriever(k=5)
)

from langchain.agents import Tool

#Defining the list of tool objects to be used by LangChain.
tools = [
   Tool(
       name='Hydroponic Knowledge database',
       func=qa.run,
       description=(
          'use this tool when answering Hydroponic knowledge queries to get '
           'more information about the topic but if you dont know or it is not mentioned in the database do not say I can try to provide some general information just say what you know as if you know it from the knowledge database'
       )
   )
]

from langchain.agents import create_react_agent
from langchain import hub

prompt = hub.pull("hwchase17/react-chat")
agent = create_react_agent(
   tools=tools,
   llm=llm,
   prompt=prompt,
)



# Create an agent executor by passing in the agent and tools
from langchain.agents import AgentExecutor
agent_executor = AgentExecutor(agent=agent,
                               tools=tools,
                               verbose=True,
                               memory=conversational_memory,
                               max_iterations=30,
                               max_execution_time=600,
                               #early_stopping_method='generate',
                               handle_parsing_errors=True
                               )


# Function for continuing the conversation
import streamlit as st

# Function for continuing the conversation
def continue_conversation(input, history):
    # Invoke the agent and get the response
    response = agent_executor.invoke({"input": input})
    output = response['output']

    # Prepend the new input and output to the history (latest conversation comes first)
    history.insert(0, {"role": "Agricultor", "message": input})
    history.insert(0, {"role": "Hydroponic Agent", "message": output})

    # Return the current response and the full history (hidden state)
    return output, history

# Streamlit UI
def main():
    st.set_page_config(page_title="Hydroponic AI Agent", page_icon="👨‍⚕️")
    st.title("Hydroponic AI Agent")

    # Initialize the conversation history
    if 'history' not in st.session_state:
        st.session_state.history = []

    # Sidebar for memory display
    with st.sidebar:
        st.header("Conversation History")
        st.write("This section contains the conversation history.")

    # Create a container for the chat
    chat_container = st.container()

    # Display the chat history with the latest conversation at the top
    for chat in st.session_state.history:
        if chat['role'] == 'Agricultor':
            chat_container.markdown(f"**Agricultor:** {chat['message']}")
        else:
            chat_container.markdown(f"**Hydroponic AI Assistant:** {chat['message']}")

    # User input text box at the bottom
    user_input = st.text_input("Ask a question:", key="input", placeholder="Tell me what do you want to know ?")

    if user_input:
        # Get the response and update the conversation history
        output, updated_history = continue_conversation(user_input, st.session_state.history)
        
        # Update the session state with the new history
        st.session_state.history = updated_history

    # Display memory of past conversation in an expandable section
    with st.expander("Memory", expanded=True):
        for chat in st.session_state.history:
            st.write(f"**{chat['role']}:** {chat['message']}")

if __name__ == "__main__":
    main()