File size: 5,018 Bytes
55f7a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import logging
import os
from typing import Optional

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="DeepSeek R1 Chat API",
    description="DeepSeek R1 model hosted on Hugging Face Spaces",
    version="1.0.0"
)

# Request/Response models
class ChatRequest(BaseModel):
    message: str
    max_length: Optional[int] = 512
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 0.9

class ChatResponse(BaseModel):
    response: str
    status: str

# Global variables for model and tokenizer
model = None
tokenizer = None

@app.on_event("startup")
async def load_model():
    """Load the DeepSeek model on startup"""
    global model, tokenizer
    
    try:
        logger.info("Loading DeepSeek R1 model...")
        
        # Use a smaller DeepSeek model that fits in Spaces
        model_name = "deepseek-ai/deepseek-r1-distill-qwen-1.5b"
        
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True,
            padding_side="left"
        )
        
        # Add pad token if it doesn't exist
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        # Load model with appropriate settings for Spaces
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            trust_remote_code=True,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device_map="auto" if torch.cuda.is_available() else None,
            low_cpu_mem_usage=True
        )
        
        logger.info("Model loaded successfully!")
        
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        raise e

@app.get("/")
async def root():
    """Health check endpoint"""
    return {
        "message": "DeepSeek R1 Chat API is running!",
        "status": "healthy",
        "model_loaded": model is not None
    }

@app.get("/health")
async def health_check():
    """Detailed health check"""
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "tokenizer_loaded": tokenizer is not None,
        "cuda_available": torch.cuda.is_available(),
        "device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0
    }

@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
    """Chat endpoint for DeepSeek model"""
    
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded yet")
    
    try:
        # Prepare the input
        prompt = f"User: {request.message}\nAssistant:"
        
        # Tokenize input
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=1024
        )
        
        # Move to appropriate device
        if torch.cuda.is_available():
            inputs = {k: v.cuda() for k, v in inputs.items()}
        
        # Generate response
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=request.max_length,
                temperature=request.temperature,
                top_p=request.top_p,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                repetition_penalty=1.1
            )
        
        # Decode response
        full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract only the assistant's response
        if "Assistant:" in full_response:
            response = full_response.split("Assistant:")[-1].strip()
        else:
            response = full_response[len(prompt):].strip()
        
        return ChatResponse(response=response, status="success")
        
    except Exception as e:
        logger.error(f"Error during generation: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")

@app.post("/generate")
async def generate(request: ChatRequest):
    """Alternative generation endpoint"""
    return await chat(request)

@app.get("/model-info")
async def model_info():
    """Get model information"""
    if model is None:
        return {"status": "Model not loaded"}
    
    return {
        "model_name": "deepseek-ai/deepseek-r1-distill-qwen-1.5b",
        "model_type": type(model).__name__,
        "tokenizer_type": type(tokenizer).__name__,
        "vocab_size": tokenizer.vocab_size if tokenizer else None,
        "device": str(next(model.parameters()).device) if model else None
    }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)