Spaces:
Sleeping
Sleeping
File size: 3,865 Bytes
d97f2ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import os
import subprocess
import tempfile
import shutil
from zipfile import ZipFile
import logging
import json
import threading
import psutil
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
connected_cpus = {}
# Function to donate CPU
def donate_cpu(data):
host = data['host']
cpu_count = data['cpu_count']
connected_cpus[host] = {"cpu_count": cpu_count, "usage": 0.0}
logger.info(f"CPU donated by {host} with {cpu_count} CPUs.")
return {"status": "success", "message": f"CPU donated by {host}"}
# Function to update CPU usage
def update_cpu_usage(data):
host = data['host']
usage = data['usage']
if host in connected_cpus:
connected_cpus[host]['usage'] = usage
logger.info(f"Updated CPU usage for {host}: {usage}%")
return {"status": "success"}
# Function to run the provided Python script using MPI
def run_script(script_name, folder_path):
output_log = tempfile.TemporaryFile(mode='w+t')
try:
# Collect all available CPUs
total_cpus = sum(cpu['cpu_count'] for cpu in connected_cpus.values())
# Run the script using MPI
result = subprocess.run(['mpiexec', '-n', str(total_cpus), 'python', script_name], cwd=folder_path, stdout=output_log, stderr=subprocess.STDOUT)
output_log.seek(0)
log_output = output_log.read()
except Exception as e:
log_output = str(e)
finally:
output_log.close()
return log_output
# Function to handle file uploads and script execution
def handle_upload(folder, script_name):
# Create a temporary directory to store uploaded files
temp_dir = tempfile.mkdtemp()
# Save the uploaded folder contents to the temporary directory
folder_path = os.path.join(temp_dir, 'uploaded_folder')
os.makedirs(folder_path, exist_ok=True)
for file_name, file_obj in folder.items():
with open(os.path.join(folder_path, file_name), 'wb') as f:
f.write(file_obj.read())
# Run the script
log_output = run_script(script_name, folder_path)
# Create a zip file of the entire folder (including any new files created by the script)
zip_path = os.path.join(temp_dir, 'output_folder.zip')
with ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(folder_path):
for file in files:
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), folder_path))
return log_output, zip_path
# Function to get connected CPUs information
def get_cpu_info():
info = []
for host, data in connected_cpus.items():
info.append(f"{host}: {data['cpu_count']} CPUs, {data['usage']}% usage")
return "\n".join(info)
# Gradio interface
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("## Python Script Executor with Distributed Computing")
with gr.Row():
folder = gr.File(label="Upload Folder", file_count="multiple", file_types=['file'])
script_name = gr.Textbox(label="Python Script Name")
log_output = gr.Textbox(label="Log Output", interactive=False)
output_folder = gr.File(label="Download Output Folder")
cpu_info = gr.Textbox(label="Connected CPUs Info", interactive=False)
run_button = gr.Button("Run Script")
refresh_button = gr.Button("Refresh CPU Info")
run_button.click(fn=handle_upload, inputs=[folder, script_name], outputs=[log_output, output_folder])
refresh_button.click(fn=get_cpu_info, inputs=[], outputs=[cpu_info])
# Define the donate CPU endpoint
demo.api(donate_cpu, inputs=gr.JSON(), outputs=gr.JSON(), name="donate_cpu")
demo.launch()
if __name__ == "__main__":
gradio_interface()
|