File size: 22,459 Bytes
696b1e3
 
 
 
 
 
 
 
 
 
 
1ad084f
70bcbb5
696b1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70bcbb5
696b1e3
 
1ad084f
696b1e3
 
 
1ad084f
696b1e3
 
 
 
 
 
 
 
 
 
 
 
823d6c0
 
 
 
 
 
 
 
 
3f65914
 
696b1e3
 
1ad084f
696b1e3
 
1ad084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962fc4e
1ad084f
962fc4e
 
 
 
 
 
 
 
 
 
 
1ad084f
696b1e3
1ad084f
 
 
 
 
 
 
962fc4e
696b1e3
 
70bcbb5
696b1e3
 
 
 
1ad084f
696b1e3
 
 
1ad084f
696b1e3
 
1ad084f
 
70bcbb5
 
 
 
 
 
1ad084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70bcbb5
1ad084f
 
 
 
 
3f65914
 
70bcbb5
 
1ad084f
 
 
 
 
70bcbb5
22e09d4
1ad084f
 
 
70bcbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad084f
696b1e3
 
 
 
 
 
70bcbb5
 
 
823d6c0
 
 
 
 
 
696b1e3
 
 
 
 
 
1ad084f
 
 
696b1e3
70bcbb5
1ad084f
 
 
 
 
 
 
 
 
 
 
 
70bcbb5
 
 
3f65914
 
 
696b1e3
 
 
1ad084f
696b1e3
 
e94a499
5b9511b
 
 
 
 
 
 
 
 
70bcbb5
5b9511b
 
 
70bcbb5
5b9511b
 
 
 
70bcbb5
5b9511b
962fc4e
70bcbb5
 
962fc4e
70bcbb5
962fc4e
 
 
 
 
 
 
 
 
 
 
 
 
5b9511b
 
 
70bcbb5
 
 
 
 
 
 
 
 
 
962fc4e
5b9511b
 
 
 
 
 
 
962fc4e
 
 
5b9511b
 
 
 
 
 
 
823d6c0
5b9511b
 
 
 
 
 
 
 
962fc4e
 
5b9511b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823d6c0
 
70bcbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823d6c0
5b9511b
 
 
 
 
 
 
 
 
 
 
 
 
3f65914
5b9511b
70bcbb5
22e09d4
5b9511b
 
 
 
 
823d6c0
70bcbb5
 
 
 
 
823d6c0
 
 
 
 
 
70bcbb5
 
823d6c0
 
70bcbb5
962fc4e
823d6c0
 
 
 
 
 
 
70bcbb5
 
3f65914
70bcbb5
3f65914
 
 
 
 
70bcbb5
 
 
823d6c0
70bcbb5
 
 
823d6c0
 
 
 
70bcbb5
823d6c0
70bcbb5
 
 
 
823d6c0
 
70bcbb5
823d6c0
 
 
70bcbb5
3f65914
823d6c0
 
e94a499
 
 
 
1ad084f
70bcbb5
3f65914
1ad084f
 
 
e94a499
1ad084f
 
823d6c0
1ad084f
 
 
70bcbb5
 
3f65914
70bcbb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import streamlit as st
import torch
import numpy as np
import time
import string
import pandas as pd
import numpy as np
from transformers import BertTokenizer, BertModel
from collections import defaultdict, Counter
from tqdm.auto import tqdm
from sklearn.metrics.pairwise import cosine_similarity
import time
import random

#Loading the model
@st.cache_resource
def get_models():
  st.write('Loading the model...')
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
  model = BertModel.from_pretrained("bert-base-uncased")
  st.write("_The model is loaded and ready to use! :tada:_")
  return model, tokenizer

#convert numpy arrays from strings back to arrays
def str_to_numpy(array_string):
    array_string = array_string.replace('\n', '').replace('[','').replace(']','')
    numpy_array = np.fromstring(array_string, sep=' ')
    numpy_array = numpy_array.reshape((1, -1))
    return numpy_array

@st.cache_data  # 👈 Add the caching decorator
def load_data():
    vectors_df = pd.read_csv('filtered_restaurants_dataframe_with_embeddings.csv',  encoding="utf-8")
    embeds = dict(enumerate(vectors_df['Embeddings']))
    rest_names = list(vectors_df['Names'])
    vectors_df['Weights'] = [1]*len(vectors_df)
    return embeds, rest_names, vectors_df

#type: dict; keys: 0-n
restaurants_embeds, rest_names, init_df = load_data()

model, tokenizer = get_models()

#a function that takes a sentence and converts it into embeddings
def get_bert_embeddings(sentence, model, tokenizer):
    inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state.mean(dim=1)  # Average pool over tokens
    return embeddings

# a function that return top-K best restaurants
def compute_cos_sim(input):
    query = ""
    query += input

    # for el in st.session_state.preferences_1:
    #     query += el
    # for el in st.session_state.preferences_2:
    #     query += el
    
    # st.write("Your query is", query)
    # st.write("Your restrictions are", st.session_state.restrictions)
    embedded_query = get_bert_embeddings(query, model, tokenizer)
    embedded_query = embedded_query.numpy()
    top_similar = np.array([])
    for i in range(len(restaurants_embeds)):
        name = rest_names[i]
        top_similar = np.append(top_similar, cosine_similarity(embedded_query, str_to_numpy(restaurants_embeds[i]))[0][0])
    
    st.session_state.df['cos_sim'] = top_similar.tolist()
    weights = np.array(st.session_state.df['Weights'])
    #multiply weights by the cosine similarity
    top_similar_weighted = dict(enumerate(np.multiply(top_similar, weights)))
    
    st.session_state.df['Relevancy'] = top_similar_weighted.values()
    return st.session_state.df

def sort_by_relevancy(k):
    '''
    k - int - how many top-matching places to show
    '''
    top_similar_weighted = dict(enumerate(st.session_state.precalculated_df['Relevancy']))
    #sort in the descending order
    top_similar_weighted = dict(sorted(top_similar_weighted.items(), key=lambda item: item[1], reverse=True))
    #leave only K recommendations
    top_k_similar = dict([(key, value) for key, value in top_similar_weighted.items()][:k])
    #get restaurant names
    names = [rest_names[i] for i in top_k_similar.keys()]
    result = dict(zip(names, top_k_similar.values()))
    return result

def sort_by_price(k):
    '''
    k - int - how many top-matching places to show
    '''
    relevance = np.array(st.session_state.precalculated_df['Relevancy'])
    prices = np.array([st.session_state.price[str(val)] for val in st.session_state.precalculated_df['Price']])
    top_similar_by_price = dict(enumerate(np.multiply(relevance, prices)))
    st.session_state.precalculated_df['Sort_price'] = top_similar_by_price.values()
    
    #sort in the descending order
    top_similar_by_price = dict(sorted(top_similar_by_price.items(), key=lambda item: item[1], reverse=True))
    #leave only K recommendations
    top_k_similar = dict([(key, value) for key, value in top_similar_by_price.items()][:k])
    #get restaurant names
    names = [rest_names[i] for i in top_k_similar.keys()]
    result = dict(zip(names, top_k_similar.values()))
    return result

def sort_by_rating(k):
    '''
    k - int - how many top-matching places to show
    '''
    relevance = np.array(st.session_state.precalculated_df['Relevancy'])
    rating = np.array(st.session_state.precalculated_df['Rating'])
    top_similar_by_rating = dict(enumerate(np.multiply(relevance, rating)))
    
    ## Combine the three lists into a list of tuples (name, score, price)
    # restaurant_data = list(zip(rest_names, relevance, rating))

    # # Sort the combined list based on rating (index 2) in descending order and relevance (index 1) in descending order
    # sorted_data = sorted(restaurant_data, key=lambda x: (-x[1], -x[2]))

    # # Extract the sorted lists
    # sorted_restaurant_names, sorted_relevance, sorted_rating = zip(*sorted_data)
    # result = {sorted_restaurant_names[i]: sorted_relevance[i] for i in range(k)}

    st.session_state.precalculated_df['Sort_rating'] = top_similar_by_rating.values()
    
    #sort in the descending order
    top_similar_by_rating = dict(sorted(top_similar_by_rating.items(), key=lambda item: item[1], reverse=True))
    #leave only K recommendations
    top_k_similar = dict([(key, value) for key, value in top_similar_by_rating.items()][:k])
    #get restaurant names
    names = [rest_names[i] for i in top_k_similar.keys()]
    result = dict(zip(names, top_k_similar.values()))
    
    return result

#combines 2 users preferences into 1 string 
def get_combined_preferences(user1, user2):
    #TODO: optimize for more users
    shared_pref = '' 
    for pref in user1:
        shared_pref += pref.lower()
        shared_pref += " "
    shared_pref += " "
    for pref in user2:
        shared_pref += pref.lower()
        shared_pref += " "
        
    freq_words = Counter(shared_pref.split())
    
    preferences = [pref for pref in st.session_state.preferences_1 if ((pref.capitalize() in st.session_state.food) or (pref in st.session_state.ambiance))]
    preferences.extend([pref for pref in st.session_state.preferences_2 if ((pref.capitalize() in st.session_state.food) or (pref in st.session_state.ambiance))])
    translator = str.maketrans('', '', string.punctuation)
    preferences = [word.translate(translator) for phrase in preferences for word in phrase.split() if len(word) > 0]
    st.session_state.fixed_preferences = [word.lower() for word in preferences]

    return shared_pref, freq_words

def filter_places(restrictions):
    #punish the weight of places that don't fit restrictions
    # st.write("Here are the restrictions you provided:")
    # st.write(restrictions)
    taboo = set([word.lower() for word in restrictions])
    for i in range(len(st.session_state.df)):
        descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
        name = st.session_state.df['Names'][i]
        for criteria in taboo:
            if criteria not in descr:
                st.session_state.df['Weights'][i] = 0.1 * st.session_state.df['Weights'][i]
            

    return st.session_state.df
        
def promote_places():
    '''
    input type: dict()
    a function that takes most common words, checks if descriptions fit them, increases their weight if they do
    '''
    #punish the weight of places that don't fit restrictions
    # st.write("Here are the most common preferences you provided:")
    # st.write(st.session_state.fixed_preferences)
    
    preferences = st.session_state.fixed_preferences

    for i in range(len(st.session_state.df)):
        descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
        name = st.session_state.df['Names'][i]
        for pref in preferences:
            if pref.lower() in descr:
                st.session_state.df['Weights'][i] = 1.5 * st.session_state.df['Weights'][i]

    return st.session_state.df

def generate_results():
    st.session_state.results['Price'] = sort_by_price(10)
    st.session_state.results['Rating'] = sort_by_rating(10)
    st.session_state.results['Relevancy (default)'] = sort_by_relevancy(10)
    st.session_state.results['Distance'] = sort_by_relevancy(10)
    # with st.spinner("Sorting your results by relevancy..."):
        
def get_normalized_val(values):
    if st.session_state.sort_by == 'Relevancy (default)' or st.session_state.sort_by == 'Distance':
        # Find the minimum and maximum values
        min_value = min(st.session_state.precalculated_df['Relevancy'])
        max_value = max(st.session_state.precalculated_df['Relevancy'])
    elif st.session_state.sort_by == 'Rating':
        min_value = min(st.session_state.precalculated_df['Sort_rating'])
        max_value = max(st.session_state.precalculated_df['Sort_rating'])
    elif st.session_state.sort_by == 'Price':
        min_value = min(st.session_state.precalculated_df['Sort_price'])
        max_value = max(st.session_state.precalculated_df['Sort_price'])
    # Define a lambda function for normalization
    normalize = lambda x: 100 * round((x - min_value) / (max_value - min_value), 3)
    # Use the map function to apply the lambda function to all values
    normalized_results = dict(map(lambda item: (item[0], normalize(item[1])), values.items()))
    return normalized_results

if 'preferences_1' not in st.session_state:
  st.session_state.preferences_1 = []
  
if 'preferences_2' not in st.session_state:
  st.session_state.preferences_2 = []
  
if 'fixed_preferences' not in st.session_state:
  st.session_state.fixed_preferences = []
  
if 'additional_1' not in st.session_state:
  st.session_state.additional_1 = []
  
if 'additional_2' not in st.session_state:
  st.session_state.additional_2 = []
  
if 'food' not in st.session_state:
  st.session_state.food = ['Coffee', 'Italian', 'Mexican', 'Chinese', 'Indian', 'Asian', 'Fast food', 'Other']
  
if 'ambiance' not in st.session_state:
  st.session_state.ambiance = ['Romantic date', 'Friends catching up', 'Family gathering', 'Big group', 'Business-meeting', 'Other']

if 'restrictions' not in st.session_state:
    st.session_state.restrictions = []
    
if 'price' not in st.session_state:
    st.session_state.price = {'$': 2, '₩': 2, '$$': 1, '₩₩': 1, '$$$': 0.5, '$$$$': 0.1, "nan": 1}

if 'sort_by' not in st.session_state:
    st.session_state.sort_by = ''
    
if 'options' not in st.session_state:
    st.session_state.options = ['Relevancy (default)', 'Price', 'Rating', 'Distance']

if 'df' not in st.session_state:
    st.session_state.df = init_df
    
if 'precalculated_df' not in st.session_state:
    st.session_state.precalculated_df = pd.DataFrame()
    
if 'results' not in st.session_state:
    st.session_state.results = {}
    
if 'fixed_restrictions' not in st.session_state:
    st.session_state.fixed_restrictions = []

# Configure Streamlit page and state
st.title("GoTogether!")
st.markdown("Tell us about your preferences!")
st.caption("In section 'Others', you can describe any wishes.")


# Define custom CSS styles for the orange and blue rectangles
css = """
<style>
    .orange-box {
        background-color: orange;
        border: 2px solid darkred;
        border-radius: 10px;
        display: inline-block;
        padding: 5px 10px;
        margin: 0px;
    }
    
    .blue-box {
        background-color: #0077b6;
        border: 2px solid navy;
        border-radius: 10px;
        display: inline-block;
        padding: 5px 10px;
        color: white;
    }
    
    .green-box {
        border: 2px solid #004d00;  /* Dark green contour */
        border-radius: 10px;
        background-color: #4CAF50;  /* green background */
        display: inline-block;
        padding: 5px 10px;
        color: #FFFFFF;  /* White text color */
    }
    
    .violet-box {
        border: 2px solid #8a2be2;  /* Violet contour */
        border-radius: 10px;
        background-color: #4169E1;  /* Blue background */
        display: inline-block;
        padding: 5px 10px;
        color: #FFFFFF;  /* White text color */
    }
</style>
"""

text_css = """
<style>
    .text {
        font-weight: bold;
        color: #0077b6;  /* Sea-blue text color */
        margin-right: 1px;
    }
</style>
"""


# options_disability_1 = st.multiselect(
#      'Do you need a wheelchair?',
#      ['Yes', 'No'], ['No'], key=101)

# if options_disability_1 == 'Yes':
#     st.session_state.restrictions.append('Wheelchair')

st.markdown(css, unsafe_allow_html=True)
st.markdown(f'<div class="violet-box">User 1</div>', unsafe_allow_html=True)

food_1 = st.selectbox('Select the food type you prefer', st.session_state.food, key=1)
if food_1 == 'Other':
    food_1 = st.text_input(label="Your description", placeholder="What kind of food would you like to eat?", key=10)

ambiance_1 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=2)
if ambiance_1 == 'Other':
    ambiance_1 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=11)
    
options_food_1 = st.multiselect(
    'Do you have any dietary restrictions?',
    ['Vegan', 'Vegetarian', 'Halal'], key=100)

additional_1 = st.text_input(label="Your description", placeholder="Anything else you wanna share?", key=102)  
    
with_kids = st.checkbox('I will come with kids', key=200)
    
st.markdown(css, unsafe_allow_html=True)
st.markdown(f'<div class="violet-box">User 2</div>', unsafe_allow_html=True)

food_2 = st.selectbox('Select the food type you prefer', st.session_state.food, key=3)
if food_2 == 'Other':
    food_2 = st.text_input(label="Your description", placeholder="What kind of food would you like to eat?", key=4)

ambiance_2 = st.selectbox('What describes your occasion the best?', st.session_state.ambiance, key=5)
if ambiance_2 == 'Other':
    ambiance_2 = st.text_input(label="Your description", placeholder="How would you describe your meeting?", key=6)

options_food_2 = st.multiselect(
    'Do you have any dietary restrictions?',
    ['Vegan', 'Vegetarian', 'Halal'], key=7)

additional_2 = st.text_input(label="Your description", placeholder="Anything else you wanna share?", key=8) 
     
with_kids_2 = st.checkbox('I will come with kids', key=201)
    
submitted = st.button('Submit!')
    
if submitted:
    with st.spinner('Processing your request...'):
        time.sleep(1)
        if len(st.session_state.preferences_1) == 0:
            st.session_state.preferences_1.append(food_1)
            # if food_1 in st.session_state.food:
            #     st.session_state.preferences_1.append(food_1)
            # else:
            #     st.session_state.additional_1.append(food_1_o)
            st.session_state.preferences_1.append(ambiance_1)
                
            # if ambiance_1 in st.session_state.ambiance:
            #     st.session_state.preferences_1.append(ambiance_1)
            # else:
            #     st.session_state.additional_1.append(ambiance_1_o)
            st.session_state.restrictions.extend(options_food_1)
            if with_kids:
                st.session_state.restrictions.append('kids')
            if additional_1:
                st.session_state.preferences_1.append(additional_1)
    
        if len(st.session_state.preferences_2) == 0:
            st.session_state.preferences_2.append(food_2)
            # if food_2 in st.session_state.food:
            #     st.session_state.preferences_2.append(food_2)
            # else:
            #     st.session_state.additional_2.append(food_2_o)
            st.session_state.preferences_2.append(ambiance_2)
            # if ambiance_2 in st.session_state.ambiance:
            #     st.session_state.preferences_2.append(ambiance_2)
            # else:
            #     st.session_state.additional_2.append(ambiance_2_o)
            st.session_state.restrictions.extend(options_food_2)
            if additional_2:
                st.session_state.preferences_2.append(additional_2)
            if with_kids_2:
                st.session_state.restrictions.append('kids')

    st.success("Thanks, we received your preferences!")
    
else:
    st.write('☝️ Describe your preferences!')


submit = st.button("Find best matches!", type='primary')
            
if submit or (not st.session_state.precalculated_df.empty):
    with st.spinner("Please wait while we are finding the best solution..."):
        if st.session_state.precalculated_df.empty:
            query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
            #sort places based on restrictions
            st.session_state.precalculated_df = filter_places(st.session_state.restrictions)
            st.session_state.fixed_restrictions = st.session_state.restrictions
            #sort places by elevating preferrences
            
            st.session_state.precalculated_df = promote_places()
            st.session_state.precalculated_df = compute_cos_sim(query[0])
        sort_by = st.selectbox(('Sort by:'), st.session_state.options, key=400, 
                               index=st.session_state.options.index('Relevancy (default)'))
        if sort_by:
            st.session_state.sort_by = sort_by
            with st.spinner(f"Sorting your results by {sort_by.lower()}..."):
                if len(st.session_state.results) == 0:
                    generate_results()
                results = st.session_state.results[sort_by]
                if sort_by == 'Distance':
                    st.write(":pensive: Sorry, we are still working on this option. For now, the results are sorted by relevance")      
                k = 10
                st.write(f"Here are the best {k} matches to your preferences:")
                i = 1
                nums = list(range(1, 11))
                words = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'one: :zero']
                nums_emojis = dict(zip(nums, words))
                results = get_normalized_val(results)
                for name, score in results.items(): 
                    condition = st.session_state.precalculated_df['Names'] == name
                    rating = st.session_state.precalculated_df.loc[condition, 'Rating'].values[0]
                    with st.expander(f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:): match score: {score}%"):
                        
                        #f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:) :", 'match score:', score
                        try:
                            if type(st.session_state.precalculated_df.loc[condition, 'Price'].values[0]) == str:
                                st.write("Price category:", st.session_state.precalculated_df.loc[condition, 'Price'].values[0])
                        except:
                            pass
                        
                        descr = st.session_state.precalculated_df.loc[condition, 'Strings'].values[0]
                        for word in set([word.lower() for word in descr.split()]):
                            if word in [el.lower() for el in st.session_state.fixed_preferences]:
                                st.markdown(f'✅{word.capitalize()}')
                            if word in [el.lower() for el in st.session_state.fixed_restrictions]:
                                if word == 'kids':
                                    st.markdown(f'✅Good for kids')
                                else: 
                                    st.markdown(f'✅{word.capitalize()}')
                               
                        
                        #Restaurant category
                        type = [item for item in eval(st.session_state.precalculated_df.loc[condition, 'Category'].values[0])]
                        st.markdown(text_css, unsafe_allow_html=True)
                        st.markdown('<div class="text">Category</div>', unsafe_allow_html=True)
                        
                        # Display HTML with the custom styles
                        for word in type:
                            st.markdown(css, unsafe_allow_html=True)
                            st.markdown(f'<div class="blue-box">{word}</div>', unsafe_allow_html=True)
                           
                        keywords = [item[0] for item in eval(st.session_state.precalculated_df.loc[condition, 'Keywords'].values[0]) if item[1] > 2]
                        if len(keywords) > 0:
                            st.markdown(text_css, unsafe_allow_html=True)
                            st.markdown('<div class="text">Other users say:</div>', unsafe_allow_html=True)
                        
                        for pair in keywords[:3]:
                            st.markdown(css, unsafe_allow_html=True)
                            st.markdown(f'<div class="orange-box">{pair[0]} {pair[1]}</div>', unsafe_allow_html=True)                        
                        
                        url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
                        st.write(f"_Check on the_ [_map_]({url})")
                         
                        # st.write(descr)
                                        
                    i+=1
                            
                # st.markdown("This is a text with <span style='font-size: 20px;'>bigger</span> and <i>italic</i> text.", unsafe_allow_html=True)
                # st.markdown("<span style='font-size: 24px;'>This is larger text</span>", unsafe_allow_html=True)

        
            st.session_state.preferences_1, st.session_state.preferences_2 = [], []
            # st.session_state.restrictions = []
        
stop = st.button("New search!", type='primary', key=500)  
if stop:               
    st.write("New search is launched. Please specify your preferences in the form!")
    st.session_state.preferences_1, st.session_state.preferences_2 = [], []
    st.session_state.restrictions = []
    st.session_state.additional_1, st.session_state.additional_2 = [], []
    st.session_state.sort_by = ""
    st.session_state.df = init_df
    st.session_state.precalculated_df = pd.DataFrame()
    st.session_state.results = {}
    st.session_state.fixed_preferences = []