Spaces:
Runtime error
Runtime error
File size: 7,812 Bytes
a507bdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT
from functools import lru_cache
from typing import Dict, List
import e3nn.o3 as o3
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.nvtx import range as nvtx_range
from se3_transformer.runtime.utils import degree_to_dim
@lru_cache(maxsize=None)
def get_clebsch_gordon(J: int, d_in: int, d_out: int, device) -> Tensor:
""" Get the (cached) Q^{d_out,d_in}_J matrices from equation (8) """
return o3.wigner_3j(J, d_in, d_out, dtype=torch.float64, device=device).permute(2, 1, 0)
@lru_cache(maxsize=None)
def get_all_clebsch_gordon(max_degree: int, device) -> List[List[Tensor]]:
all_cb = []
for d_in in range(max_degree + 1):
for d_out in range(max_degree + 1):
K_Js = []
for J in range(abs(d_in - d_out), d_in + d_out + 1):
K_Js.append(get_clebsch_gordon(J, d_in, d_out, device))
all_cb.append(K_Js)
return all_cb
def get_spherical_harmonics(relative_pos: Tensor, max_degree: int) -> List[Tensor]:
all_degrees = list(range(2 * max_degree + 1))
with nvtx_range('spherical harmonics'):
sh = o3.spherical_harmonics(all_degrees, relative_pos, normalize=True)
return torch.split(sh, [degree_to_dim(d) for d in all_degrees], dim=1)
@torch.jit.script
def get_basis_script(max_degree: int,
use_pad_trick: bool,
spherical_harmonics: List[Tensor],
clebsch_gordon: List[List[Tensor]],
amp: bool) -> Dict[str, Tensor]:
"""
Compute pairwise bases matrices for degrees up to max_degree
:param max_degree: Maximum input or output degree
:param use_pad_trick: Pad some of the odd dimensions for a better use of Tensor Cores
:param spherical_harmonics: List of computed spherical harmonics
:param clebsch_gordon: List of computed CB-coefficients
:param amp: When true, return bases in FP16 precision
"""
basis = {}
idx = 0
# Double for loop instead of product() because of JIT script
for d_in in range(max_degree + 1):
for d_out in range(max_degree + 1):
key = f'{d_in},{d_out}'
K_Js = []
for freq_idx, J in enumerate(range(abs(d_in - d_out), d_in + d_out + 1)):
Q_J = clebsch_gordon[idx][freq_idx]
K_Js.append(torch.einsum('n f, k l f -> n l k', spherical_harmonics[J].float(), Q_J.float()))
basis[key] = torch.stack(K_Js, 2) # Stack on second dim so order is n l f k
if amp:
basis[key] = basis[key].half()
if use_pad_trick:
basis[key] = F.pad(basis[key], (0, 1)) # Pad the k dimension, that can be sliced later
idx += 1
return basis
@torch.jit.script
def update_basis_with_fused(basis: Dict[str, Tensor],
max_degree: int,
use_pad_trick: bool,
fully_fused: bool) -> Dict[str, Tensor]:
""" Update the basis dict with partially and optionally fully fused bases """
num_edges = basis['0,0'].shape[0]
device = basis['0,0'].device
dtype = basis['0,0'].dtype
sum_dim = sum([degree_to_dim(d) for d in range(max_degree + 1)])
# Fused per output degree
for d_out in range(max_degree + 1):
sum_freq = sum([degree_to_dim(min(d, d_out)) for d in range(max_degree + 1)])
basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, degree_to_dim(d_out) + int(use_pad_trick),
device=device, dtype=dtype)
acc_d, acc_f = 0, 0
for d_in in range(max_degree + 1):
basis_fused[:, acc_d:acc_d + degree_to_dim(d_in), acc_f:acc_f + degree_to_dim(min(d_out, d_in)),
:degree_to_dim(d_out)] = basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)]
acc_d += degree_to_dim(d_in)
acc_f += degree_to_dim(min(d_out, d_in))
basis[f'out{d_out}_fused'] = basis_fused
# Fused per input degree
for d_in in range(max_degree + 1):
sum_freq = sum([degree_to_dim(min(d, d_in)) for d in range(max_degree + 1)])
basis_fused = torch.zeros(num_edges, degree_to_dim(d_in), sum_freq, sum_dim,
device=device, dtype=dtype)
acc_d, acc_f = 0, 0
for d_out in range(max_degree + 1):
basis_fused[:, :, acc_f:acc_f + degree_to_dim(min(d_out, d_in)), acc_d:acc_d + degree_to_dim(d_out)] \
= basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)]
acc_d += degree_to_dim(d_out)
acc_f += degree_to_dim(min(d_out, d_in))
basis[f'in{d_in}_fused'] = basis_fused
if fully_fused:
# Fully fused
# Double sum this way because of JIT script
sum_freq = sum([
sum([degree_to_dim(min(d_in, d_out)) for d_in in range(max_degree + 1)]) for d_out in range(max_degree + 1)
])
basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, sum_dim, device=device, dtype=dtype)
acc_d, acc_f = 0, 0
for d_out in range(max_degree + 1):
b = basis[f'out{d_out}_fused']
basis_fused[:, :, acc_f:acc_f + b.shape[2], acc_d:acc_d + degree_to_dim(d_out)] = b[:, :, :,
:degree_to_dim(d_out)]
acc_f += b.shape[2]
acc_d += degree_to_dim(d_out)
basis['fully_fused'] = basis_fused
del basis['0,0'] # We know that the basis for l = k = 0 is filled with a constant
return basis
def get_basis(relative_pos: Tensor,
max_degree: int = 4,
compute_gradients: bool = False,
use_pad_trick: bool = False,
amp: bool = False) -> Dict[str, Tensor]:
with nvtx_range('spherical harmonics'):
spherical_harmonics = get_spherical_harmonics(relative_pos, max_degree)
with nvtx_range('CB coefficients'):
clebsch_gordon = get_all_clebsch_gordon(max_degree, relative_pos.device)
with torch.autograd.set_grad_enabled(compute_gradients):
with nvtx_range('bases'):
basis = get_basis_script(max_degree=max_degree,
use_pad_trick=use_pad_trick,
spherical_harmonics=spherical_harmonics,
clebsch_gordon=clebsch_gordon,
amp=amp)
return basis
|