Spaces:
Paused
Paused
File size: 4,987 Bytes
826f8aa 336c194 b828e09 09b29b5 826f8aa 09b29b5 826f8aa 336c194 826f8aa 09b29b5 826f8aa 09b29b5 826f8aa b828e09 826f8aa 336c194 826f8aa b828e09 336c194 b828e09 336c194 b828e09 336c194 826f8aa b828e09 336c194 b828e09 336c194 5f9e409 e2570ef 826f8aa 5f9e409 826f8aa b828e09 826f8aa b828e09 826f8aa 336c194 826f8aa b828e09 826f8aa b828e09 826f8aa b828e09 09b29b5 b828e09 826f8aa b828e09 09b29b5 b828e09 826f8aa b828e09 826f8aa b828e09 826f8aa b828e09 826f8aa b828e09 826f8aa e2570ef 826f8aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import easyocr
import numpy as np
import cv2
from PIL import Image
import io
import base64
# Initialize EasyOCR reader
reader = easyocr.Reader(['en', 'zh-cn']) # English and Chinese
def process_image(image):
"""
Process an image with EasyOCR and return the results
Args:
image: Image file (numpy array)
Returns:
Tuple of (annotated image, extracted text, JSON results)
"""
if image is None:
return None, "No image provided", []
# Run EasyOCR
results = reader.readtext(image)
# Create a copy of the image to draw bounding boxes
image_with_boxes = image.copy()
# Extract text
all_text = []
for idx, (bbox, text, prob) in enumerate(results):
# Draw bounding box
pts = np.array(bbox, np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.polylines(image_with_boxes, [pts], True, (0, 255, 0), 2)
# Add text label with confidence
label = f"{idx+1}: {text} ({prob:.2f})"
cv2.putText(image_with_boxes, label, (int(bbox[0][0]), int(bbox[0][1])-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Add to text list
all_text.append(f"{text} (Confidence: {prob:.2f})")
# Format as JSON for API
extracted_data = [
{
"text": item[1],
"confidence": float(item[2]),
"bbox": item[0]
}
for item in results
]
return image_with_boxes, "\n".join(all_text), extracted_data
def process_base64_image(base64_image):
"""
Process a base64-encoded image with EasyOCR
Args:
base64_image: Base64-encoded image string
Returns:
JSON results
"""
try:
# Decode base64 image
if ',' in base64_image:
base64_image = base64_image.split(',')[1]
image_bytes = base64.b64decode(base64_image)
image = Image.open(io.BytesIO(image_bytes))
# Convert PIL Image to numpy array
image_np = np.array(image)
# Run EasyOCR
results = reader.readtext(image_np)
# Format as JSON
extracted_data = [
{
"text": item[1],
"confidence": float(item[2]),
"bbox": item[0]
}
for item in results
]
return {
"status": "success",
"data": extracted_data
}
except Exception as e:
return {
"status": "error",
"message": str(e)
}
# Create Gradio interface
with gr.Blocks(title="SizeWize OCR API") as demo:
gr.Markdown("# SizeWize OCR API")
gr.Markdown("This API extracts text from size chart images for the SizeWize Chrome extension.")
with gr.Tab("Test Interface"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", label="Upload Image")
process_btn = gr.Button("Extract Text")
with gr.Column():
output_image = gr.Image(type="numpy", label="Detected Text")
output_text = gr.Textbox(label="Extracted Text")
output_json = gr.JSON(label="JSON Output")
process_btn.click(
fn=process_image,
inputs=input_image,
outputs=[output_image, output_text, output_json]
)
with gr.Tab("API Documentation"):
gr.Markdown("""
## API Usage
Send a POST request to this Gradio app with a base64-encoded image.
### Endpoint
```
https://gladiator-byte-ocr.hf.space/api/predict
```
### Request Format
```json
{
"data": [
"..."
]
}
```
### Response Format
```json
{
"data": [
{
"status": "success",
"data": [
{
"text": "Extracted text",
"confidence": 0.95,
"bbox": [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
},
...
]
}
]
}
```
### Example using fetch in JavaScript
```javascript
const response = await fetch('https://gladiator-byte-ocr.hf.space/api/predict', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
data: [base64EncodedImage]
})
});
const result = await response.json();
```
""")
# Define API endpoint
demo.queue()
demo.launch()
# Add a custom API endpoint for direct base64 image processing
@demo.load_from_checkpoint
def api_predict(base64_image):
return process_base64_image(base64_image) |