Spaces:
Runtime error
Runtime error
File size: 11,969 Bytes
3ff622a d651bcc 3ff622a bf162bb fa443f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
## required lib, required "pip install"
# import transformers
# import accelerate
import openai
import llama_index
import torch
import cryptography
import cryptography.fernet
## interface libs, required "pip install"
import gradio
import huggingface_hub
import huggingface_hub.hf_api
## standard libs, no need to install
import json
import requests
import time
import os
import random
import re
import sys
import psutil
import threading
import socket
# import PIL
# import pandas
import matplotlib
class HFace_Pluto(object):
#
# initialize the object
def __init__(self, name="Pluto",*args, **kwargs):
super(HFace_Pluto, self).__init__(*args, **kwargs)
self.author = "Duc Haba"
self.name = name
self._ph()
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
self._pp("Author is", self.author)
self._ph()
#
# define class var for stable division
self._device = 'cuda'
self._steps = [3,8,21,55,89,144]
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
self._xkeyfile = '.xoxo'
self._models = []
self._seed = 667 # sum of walnut in ascii (or Angle 667)
self._width = 512
self._height = 512
self._step = 50
self._guidances = 7.5
self._llama_query_engine = None
self._llama_index_doc = None
#self._generator = torch.Generator(device='cuda')
self.pipes = []
self.prompts = []
self.images = []
self.seeds = []
self.fname_id = 0
self.dname_img = "img_colab/"
self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8"
self._gpt_key="'gAAAAABkgtoTOLPegnxNIAfBfAda17h5HIHTS_65bobO3SdDlJam07AHGrcolvk9c6IWNJtTTxaCb8_JtWnLz0Y5h9doyfL-nJZggeQ6kLtaD4XwZYcG-AtYNNGCnJzVt9AaysPDnu-KWVhnJSe-DyH0oOO33doE0g=='"
self._fkey="=cvsOPRcWD6JONmdr4Sh6-PqF6nT1InYh965mI8f_sef"
self._color_primary = '#2780e3' #blue
self._color_secondary = '#373a3c' #dark gray
self._color_success = '#3fb618' #green
self._color_info = '#9954bb' #purple
self._color_warning = '#ff7518' #orange
self._color_danger = '#ff0039' #red
self._color_mid_gray = '#495057'
return
#
# pretty print output name-value line
def _pp(self, a, b,is_print=True):
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# pretty print the header or footer lines
def _ph(self,is_print=True):
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# fetch huggingface file
def fetch_hface_files(self,
hf_names,
hf_space="duchaba/monty",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
force_filename=lo)
except:
self._pp("*Error", f)
return
#
#
def push_hface_files(self,
hf_names,
hf_space="duchaba/skin_cancer_diagnose",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.upload_file(
path_or_fileobj=lo,
path_in_repo=f,
repo_id=hf_space,
repo_type=huggingface_hub.REPO_TYPE_SPACE)
except Exception as e:
self._pp("*Error", e)
return
#
def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None):
api = huggingface_hub.HfApi()
api.upload_folder(folder_path=hf_folder,
repo_id=hf_space_id,
path_in_repo=hf_dest_folder,
repo_type="space")
return
#
# Define a function to display available CPU and RAM
def fetch_system_info(self):
s=''
# Get CPU usage as a percentage
cpu_usage = psutil.cpu_percent()
# Get available memory in bytes
mem = psutil.virtual_memory()
# Convert bytes to gigabytes
mem_total_gb = mem.total / (1024 ** 3)
mem_available_gb = mem.available / (1024 ** 3)
mem_used_gb = mem.used / (1024 ** 3)
# Print the results
s += f"CPU usage: {cpu_usage}%\n"
s += f"Total memory: {mem_total_gb:.2f} GB\n"
s += f"Available memory: {mem_available_gb:.2f} GB\n"
# print(f"Used memory: {mem_used_gb:.2f} GB")
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
return s
#
def restart_script_periodically(self):
while True:
#random_time = random.randint(540, 600)
random_time = random.randint(15800, 21600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
return
#
def write_file(self,fname, txt):
f = open(fname, "w")
f.writelines("\n".join(txt))
f.close()
return
#
def fetch_gpu_info(self):
s=''
try:
s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
s += f'GPU ready staus {torch.cuda.is_available()}\n'
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
except Exception as e:
s += f'**Warning, No GPU: {e}'
return s
#
def _fetch_crypt(self,is_generate=False):
s=self._fkey[::-1]
if (is_generate):
s=open(self._xkeyfile, "rb").read()
return s
#
def _gen_key(self):
key = cryptography.fernet.Fernet.generate_key()
with open(self._xkeyfile, "wb") as key_file:
key_file.write(key)
return
#
def _decrypt_it(self, x):
y = self._fetch_crypt()
f = cryptography.fernet.Fernet(y)
m = f.decrypt(x)
return m.decode()
#
def _encrypt_it(self, x):
key = self._fetch_crypt()
p = x.encode()
f = cryptography.fernet.Fernet(key)
y = f.encrypt(p)
return y
#
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
#
def _fetch_version(self):
s = ''
# print(f"{'torch: 2.0.1':<25} Actual: {torch.__version__}")
# print(f"{'transformers: 4.29.2':<25} Actual: {transformers.__version__}")
s += f"{'openai: 0.27.7,':<28} Actual: {openai.__version__}\n"
s += f"{'huggingface_hub: 0.14.1,':<28} Actual: {huggingface_hub.__version__}\n"
s += f"{'gradio: 3.32.0,':<28} Actual: {gradio.__version__}\n"
s += f"{'cryptography: 3.34.0,':<28} Actual: {cryptography.__version__}\n"
s += f"{'llama_index: 0.6.21.post1,':<28} Actual: {llama_index.__version__}\n"
return s
#
def _fetch_host_ip(self):
s=''
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
s += f"Hostname: {hostname}\n"
s += f"IP Address: {ip_address}\n"
return s
#
def _setup_openai(self,key=None):
if (key is None):
key = self._decrypt_it(self._gpt_key)
#
openai.api_key = key
os.environ["OPENAI_API_KEY"] = key
return
#
def _fetch_index_files(self,llama_ix):
res = []
x = llama_ix.ref_doc_info
for val in x.values():
jdata = json.loads(val.to_json())
fname = jdata['extra_info']['file_name']
res.append(fname)
# remove dublication name
res = list(set(res))
return res
# add module/method
#
import functools
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
#
monty = HFace_Pluto("Monty")
monty._login_hface()
print(monty._fetch_version())
monty._ph()
print(monty.fetch_system_info())
monty._ph()
print(monty.fetch_gpu_info())
monty._ph()
print(monty._fetch_host_ip())
monty._ph()
monty._setup_openai()
@add_method(HFace_Pluto)
def load_llama_index(self,vindex='vector_index',vpath='./index_storage'):
try:
storage_context = llama_index.StorageContext.from_defaults(persist_dir=vpath)
# load index
self._llama_index_doc = llama_index.load_index_from_storage(storage_context, index_id=vindex)
print(f'Index doc are: {self._fetch_index_files(self._llama_index_doc)}')
except Exception as e:
print('**Error: can not load index, check the index_storage directory or the GPT auth token')
print('If do not have index tokens then run the .gen_llama_index() function')
print(f'Exception: {e}')
return
monty.load_llama_index()
@add_method(HFace_Pluto)
def ask_me(self, p):
if (self._llama_query_engine is None):
self._llama_query_engine = self._llama_index_doc.as_query_engine()
resp = self._llama_query_engine.query(p)
return resp
in_box = [gradio.Textbox(lines=1, label="Your Humana request", placeholder="Your Humana request...see example if you need help.")
# ,gradio.Slider(0.0001, .05, value=0.001, step=.0001,label="Your Personalize Safer Value:")
]
out_box = [gradio.Textbox(label="Humana response:")
# ,gradio.Textbox(lines=4, label="Response Raw JSON Data:")
]
#
title = "Humana and YML Fine-tune LLM model"
desc = '*Note: This model is fine-tuned by YML using GPT3.5 as the base LLM.'
arti = '''
<ul><li>The documents for fine-tuning are:</li>
<li>'ANOC - Humana Gold Plus SNP-DE (HMO-POS D-SNP).pdf', 'Humana Honor (PPO) - CMS Plan Rating.pdf', \n
'Humana Gold Plus (HMO) - CMS Plan Rating.pdf', 'docushare-app-6_8_2023 3_58_22 AM.pdf', \n
'Humana Honor (PPO) H5216-329 - Summary of Benefits.pdf', 'docushare-app-6_8_2023 4_00_10 AM.pdf', \n
'Humana Gold Plus SNP-DE (HMO-POS D-SNP) - Summary of Benefits.pdf', 'covered-drugs.pdf', \n
'Humana Gold Plus SNP-DE (HMO-POS D-SNP) - CMS Plan Rating.pdf', 'docushare-app-6_8_2023 3_58_27 AM.pdf', \n
'Humana Honor (PPO) - Evidence of Coverage.pdf', 'docushare-app-6_8_2023 3_59_37 AM.pdf', \n
'HumanaChoice (PPO) - Evidence of Coverage.pdf', 'HumanaChoice H5216-318 (PPO) - Summary of Benefits.pdf', \n
'docushare-app-6_8_2023 4_00_39 AM.pdf', 'Humana Gold Plus SNP-DE (HMO-POS D-SNP) - Evidence of Coverage.pdf', \n
'pre-authorization required.pdf', 'Humana Gold Plus H0028-014 (HMO) - Summary of Benefits.pdf', 'Step Therapy.pdf', \n
'Pharmacy List.pdf', 'HumanaChoice (PPO) - CMS Plan Rating.pdf', 'Humana Gold Plus (HMO) - Evidence of Coverage.pdf', \n
'docushare-app-6_8_2023 3_59_10 AM.pdf', 'docushare-app-6_8_2023 3_59_48 AM.pdf', 'docushare-app-6_8_2023 3_59_22 AM.pdf'</li>
<li><i>**Note: You can add more documentation. The more documentation the model has the smarter it will be.</i></li>
</ul>
'''
exp = [
['Tell me the Humana Gold Plus plan.'],
['Please write a summary in bullet point of the Humana Gold Plus SNP-DE H0028-015 (HMO-POS D-SNP) Annual Notice of Changes for 2023.'],
['Compare the Humana monthly premium and maximum out-of-pocket for in-network and out-network.'],
['What is the maximum dollar value allowance for in-network over the counter drug?'],
['Write a newsletter introducing Humana Gold Plus plan, and target it to senior citizen demographic.'],
['Please write a summary about the Humana and Longevity Health Partner so that a teenage can understand.'],
['Tell me about the state agency contact information in bullet point.'],
['Please tell me more about the Humana Offer Free Counseling about Medicare and Medicaid'],
['Write four engaging tweets about the Humana Gold Plus plan.'],
['Tell me something funny about Humana.'],
['Is Humana is same as human?']
]
flag_options = ['Good :-)', 'Need Improvement', 'Wrong Answer']
gradio.Interface(fn=monty.ask_me,
inputs=in_box,
outputs=out_box,
examples=exp,
title=title,
description=desc,
article=arti,
flagging_options=flag_options).launch(debug=True)
|