Spaces:
Running
Running
File size: 15,833 Bytes
87ce049 4707188 bde5911 4707188 bde5911 4707188 bde5911 87ce049 bde5911 87ce049 bde5911 4707188 87ce049 bde5911 4707188 87ce049 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 87ce049 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 4707188 bde5911 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import threading
# model_wrapper.py - Enhanced version with better debugging
from transformers import (
AutoTokenizer,
AutoModel,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
AutoConfig,
pipeline
)
import torch
import logging
import os
import traceback
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CodeDebuggerWrapper:
def __init__(self, model_name="Girinath11/aiml_code_debug_model"):
self.model_name = model_name
self.model = None
self.tokenizer = None
self.model_type = None
self.pipeline = None
self._ensure_model()
def _log_system_info(self):
"""Log system information for debugging."""
logger.info(f"Python version: {os.sys.version}")
logger.info(f"PyTorch version: {torch.__version__}")
try:
import transformers
logger.info(f"Transformers version: {transformers.__version__}")
except:
logger.warning("Could not get transformers version")
def _ensure_model(self):
"""Load model and tokenizer with comprehensive fallback strategies."""
logger.info(f"Starting model loading process for {self.model_name}")
self._log_system_info()
try:
# First, let's inspect the model configuration
logger.info("Step 1: Inspecting model configuration...")
config = AutoConfig.from_pretrained(self.model_name)
logger.info(f"Model architecture: {config.architectures}")
logger.info(f"Model type: {config.model_type}")
logger.info(f"Config class: {type(config).__name__}")
# Load tokenizer
logger.info("Step 2: Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
use_fast=False # Sometimes fast tokenizers cause issues
)
# Add special tokens if missing
if self.tokenizer.pad_token is None:
if self.tokenizer.eos_token is not None:
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
logger.info("β
Tokenizer loaded successfully")
logger.info(f"Vocab size: {len(self.tokenizer)}")
logger.info(f"Special tokens: pad={self.tokenizer.pad_token}, eos={self.tokenizer.eos_token}")
# Try loading with pipeline first (often more robust)
logger.info("Step 3: Attempting pipeline loading...")
pipeline_strategies = [
("text2text-generation", lambda: pipeline(
"text2text-generation",
model=self.model_name,
tokenizer=self.tokenizer,
trust_remote_code=True,
device=-1 # CPU
)),
("text-generation", lambda: pipeline(
"text-generation",
model=self.model_name,
tokenizer=self.tokenizer,
trust_remote_code=True,
device=-1
)),
]
for pipe_type, pipe_func in pipeline_strategies:
try:
logger.info(f"Trying {pipe_type} pipeline...")
self.pipeline = pipe_func()
logger.info(f"β
Successfully loaded {pipe_type} pipeline")
self.model_type = f"{pipe_type}_pipeline"
return # Success!
except Exception as e:
logger.warning(f"β {pipe_type} pipeline failed: {str(e)[:200]}...")
# If pipeline fails, try direct model loading
logger.info("Step 4: Attempting direct model loading...")
loading_strategies = [
# Strategy 1: Based on config type, try the most appropriate loader
("Config-based AutoModel", lambda: self._load_based_on_config(config)),
# Strategy 2: Force different model types with trust_remote_code
("AutoModel + trust_remote_code", lambda: AutoModel.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)),
("AutoModelForCausalLM + trust_remote_code", lambda: AutoModelForCausalLM.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)),
("AutoModelForSeq2SeqLM + trust_remote_code + ignore_mismatched", lambda: AutoModelForSeq2SeqLM.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.float32,
ignore_mismatched_sizes=True,
device_map="cpu"
)),
# Strategy 3: Try without trust_remote_code but with other options
("AutoModel + low_cpu_mem", lambda: AutoModel.from_pretrained(
self.model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
device_map="cpu"
)),
]
for strategy_name, strategy_func in loading_strategies:
try:
logger.info(f"Trying: {strategy_name}")
self.model = strategy_func()
self.model_type = type(self.model).__name__
logger.info(f"β
Successfully loaded model with {strategy_name}")
logger.info(f"Model type: {self.model_type}")
# Set to eval mode
if hasattr(self.model, 'eval'):
self.model.eval()
return # Success!
except Exception as e:
logger.warning(f"β {strategy_name} failed: {str(e)[:200]}...")
logger.debug(f"Full error: {traceback.format_exc()}")
# If we get here, all strategies failed
raise RuntimeError("β All model loading strategies failed")
except Exception as e:
logger.error(f"β Critical error in model loading: {e}")
logger.error(f"Full traceback: {traceback.format_exc()}")
raise
def _load_based_on_config(self, config):
"""Try to load model based on its configuration type."""
config_type = type(config).__name__
if "T5" in config_type or "Seq2Seq" in config_type:
return AutoModelForSeq2SeqLM.from_pretrained(
self.model_name,
trust_remote_code=True,
config=config
)
elif "GPT" in config_type or "Causal" in config_type:
return AutoModelForCausalLM.from_pretrained(
self.model_name,
trust_remote_code=True,
config=config
)
else:
return AutoModel.from_pretrained(
self.model_name,
trust_remote_code=True,
config=config
)
def debug(self, code: str) -> str:
"""Debug the provided code using the loaded model."""
if not code or not code.strip():
return "β Please provide some code to debug."
try:
# Use pipeline if available (more robust)
if self.pipeline is not None:
return self._debug_with_pipeline(code)
# Use direct model if pipeline not available
if self.model is not None:
return self._debug_with_model(code)
# Fallback: provide manual debugging suggestions
return self._manual_debug_suggestions(code)
except Exception as e:
logger.error(f"Error during debugging: {e}")
return f"β Error during debugging: {str(e)}\n\n" + self._manual_debug_suggestions(code)
def _debug_with_pipeline(self, code: str) -> str:
"""Debug using pipeline."""
try:
prompt = f"Fix this Python code:\n\n{code}\n\nFixed code:"
if "text2text" in self.model_type:
result = self.pipeline(prompt, max_length=512, num_beams=3, early_stopping=True)
return result[0]['generated_text'] if result else self._manual_debug_suggestions(code)
elif "text-generation" in self.model_type:
result = self.pipeline(prompt, max_new_tokens=256, num_return_sequences=1, temperature=0.7)
generated = result[0]['generated_text'] if result else ""
# Clean up the response
if prompt in generated:
generated = generated.replace(prompt, "").strip()
return generated if generated else self._manual_debug_suggestions(code)
except Exception as e:
logger.error(f"Pipeline debugging failed: {e}")
return self._manual_debug_suggestions(code)
def _debug_with_model(self, code: str) -> str:
"""Debug using direct model."""
try:
prompt = f"Debug and fix this Python code:\n\n{code}\n\nFixed code:"
inputs = self.tokenizer(
prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
with torch.no_grad():
if hasattr(self.model, 'generate'):
outputs = self.model.generate(
**inputs,
max_new_tokens=256,
num_beams=3,
early_stopping=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=getattr(self.tokenizer, 'eos_token_id', None),
do_sample=True,
temperature=0.7
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean response
if prompt in response:
response = response.replace(prompt, "").strip()
return response if response else self._manual_debug_suggestions(code)
else:
return f"β οΈ Model type '{self.model_type}' doesn't support generation.\n\n" + self._manual_debug_suggestions(code)
except Exception as e:
logger.error(f"Direct model debugging failed: {e}")
return self._manual_debug_suggestions(code)
def _manual_debug_suggestions(self, code: str) -> str:
"""Provide manual debugging suggestions when AI model fails."""
suggestions = []
# Check for common Python syntax errors
lines = code.split('\n')
for i, line in enumerate(lines, 1):
line_stripped = line.strip()
if not line_stripped or line_stripped.startswith('#'):
continue
# Check for missing colons
if any(keyword in line_stripped for keyword in ['if ', 'for ', 'while ', 'def ', 'class ', 'try:', 'except', 'else', 'elif']):
if not line_stripped.endswith(':') and not line_stripped.endswith(':\\'):
suggestions.append(f"Line {i}: Missing colon (:) at end of statement")
# Check for obvious indentation issues
if i > 1 and line_stripped and not line.startswith(' ') and not line.startswith('\t'):
prev_line = lines[i-2].strip() if i > 1 else ""
if prev_line.endswith(':'):
suggestions.append(f"Line {i}: Possible indentation error - code after ':' should be indented")
# Check for common runtime errors
if 'len(' in code and '[]' in code:
suggestions.append("β οΈ Potential division by zero: Check for empty lists before using len()")
if '/0' in code or '/ 0' in code:
suggestions.append("β οΈ Division by zero detected")
# Create response
result = f"π§ **Manual Debug Analysis for:**\n```python\n{code}\n```\n\n"
if suggestions:
result += "**Issues Found:**\n"
for suggestion in suggestions:
result += f"β’ {suggestion}\n"
else:
result += "**No obvious syntax errors detected.**\n"
result += "\n**General Tips:**\n"
result += "β’ Check for missing colons (:) after if/for/def statements\n"
result += "β’ Verify proper indentation (4 spaces per level)\n"
result += "β’ Ensure all parentheses, brackets, and quotes are balanced\n"
result += "β’ Check for typos in variable and function names\n"
result += "β’ Make sure all required imports are included\n"
return result
# Alternative lightweight debugger if the main one fails completely
class FallbackDebugger:
def __init__(self):
self.model = None
self.tokenizer = None
logger.info("Using fallback debugger - AI model unavailable")
def debug(self, code: str) -> str:
"""Simple rule-based debugging."""
if not code or not code.strip():
return "β Please provide some code to debug."
issues = []
lines = code.split('\n')
# Basic syntax checking
for i, line in enumerate(lines, 1):
stripped = line.strip()
if not stripped or stripped.startswith('#'):
continue
# Missing colons
control_words = ['if ', 'elif ', 'else', 'for ', 'while ', 'def ', 'class ', 'try', 'except', 'finally']
if any(word in stripped for word in control_words):
if not stripped.endswith(':'):
issues.append(f"Line {i}: Missing colon (:)")
# Indentation after colon
if i < len(lines) and stripped.endswith(':'):
next_line = lines[i] if i < len(lines) else ""
if next_line.strip() and not next_line.startswith((' ', '\t')):
issues.append(f"Line {i+1}: Should be indented after ':'")
# Generate response
result = f"π§ **Code Analysis** (AI Model Unavailable)\n\n"
result += f"```python\n{code}\n```\n\n"
if issues:
result += "**Potential Issues:**\n"
for issue in issues:
result += f"β’ {issue}\n"
else:
result += "**No obvious syntax errors found.**\n"
result += "\n**Common Debugging Steps:**\n"
result += "1. Run the code to see specific error messages\n"
result += "2. Check syntax: colons, indentation, parentheses\n"
result += "3. Verify variable names and imports\n"
result += "4. Use print() statements to debug logic\n"
return result
|