File size: 2,645 Bytes
d47fa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import pandas as pd
import tsai
import Generate

example_df_aircomp=pd.read_csv('D:/project/aircompressordata.csv')
example_df_ener=pd.read_csv('D:/project/energymeter.csv')
example_df_boiler=pd.read_csv('D:/project/Boiler1.csv')

demo=gr.Blocks(title="EcoForecast")

def pred_air(date):
    preds=Generate.inference_Aircomp(date,example_df_aircomp)
    return preds

def pred_ener(date):
    preds=Generate.inference_Energy(date,example_df_ener)
    return preds

def pred_boiler(date):
    preds=Generate.inference_boiler(date,example_df_boiler)
    return preds

def plotgraphs(dataframe):
    plots=0
    return plots

with demo:  
    gr.Markdown("Tool for predicting the next seven days of data in the future using the last 200 points of data incoming")
    with gr.Tabs():
        with gr.TabItem("Air compressor data"):
            with gr.Row():
                Air_input=gr.Text(placeholder="Enter date and like the example only",show_label=False)
                air_dataframe_input=gr.Dataframe(example_df_aircomp.head(100))
                Air_dataframe_output=gr.Dataframe()
                Air_plots=gr.Plot()
            with gr.Column():
                Aircomp_output_btn=gr.Button("Forecast")
                Air_plot_forecast=gr.Button("Plot")
                
        with gr.TabItem("Energymeter data"):
            with gr.Row():
                ener_input=gr.Text(placeholder="Enter the date and time in example format only",show_label=False)
                ener_dataframe_input=gr.Dataframe(example_df_ener.head(100))
                Ener_dataframe_output=gr.Dataframe()
                Ener_plots=gr.Plot()
            with gr.Column():
                Energy_output_btn=gr.Button("Forecast")
                Ener_plot_forecast=gr.Button("Plot")
                
        with gr.TabItem("Boiler data"):
            with gr.Row():
                boiler_input=gr.Text(placeholder="Enter the date and time in example format only",show_label=False)
                ener_dataframe_input=gr.Dataframe(example_df_boiler.head(100))
                boiler_dataframe_output=gr.Dataframe()
                boil_plots=gr.Plot()
            with gr.Column():
                Boiler_output_btn=gr.Button("Forecast")
                boiler_plot_forecast=gr.Button("Plot")
                
    Aircomp_output_btn.click(pred_air,inputs=Air_input,outputs=Air_dataframe_output)
    Energy_output_btn.click(pred_ener,inputs=ener_input,outputs=Ener_dataframe_output)
    Boiler_output_btn.click(pred_boiler,inputs=boiler_input,outputs=boiler_dataframe_output)
    Air_plot_forecast.click()
    
demo.launch(share=True)