Spaces:
Sleeping
Sleeping
File size: 10,488 Bytes
3b7b011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import argparse
import getpass
import sys
sys.path.append('..')
import json
from multiprocessing import cpu_count
import torch
try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available():
from lib.infer.modules.ipex import ipex_init
ipex_init()
except Exception:
pass
import logging
logger = logging.getLogger(__name__)
import os
import sys
import subprocess
import platform
syspf = platform.system()
python_version = "39"
def find_python_executable():
runtime_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'runtime'))
if os.path.exists(runtime_path):
logger.info("Current user: Runtime")
return runtime_path
elif syspf == "Linux":
try:
result = subprocess.run(["which", "python"], capture_output=True, text=True, check=True)
python_path = result.stdout.strip()
logger.info("Current user: Linux")
return python_path
except subprocess.CalledProcessError:
raise Exception("Could not find the Python path on Linux.")
elif syspf == "Windows":
try:
result = subprocess.run(["where", "python"], capture_output=True, text=True, check=True)
output_lines = result.stdout.strip().split('\n')
if output_lines:
python_path = output_lines[0]
python_path = os.path.dirname(python_path)
current_user = os.getlogin() or getpass.getuser()
logger.info("Current user: %s" % current_user)
return python_path
raise Exception("Python executable not found in the PATH.")
except subprocess.CalledProcessError:
raise Exception("Could not find the Python path on Windows.")
elif syspf == "Darwin":
try:
result = subprocess.run(["which", "python"], capture_output=True, text=True, check=True)
python_path = result.stdout.strip()
logger.info("Current user: Darwin")
return python_path
except subprocess.CalledProcessError:
raise Exception("Could not find the Python path on macOS.")
else:
raise Exception("Operating system not compatible: {syspf}".format(syspf=syspf))
python_path = find_python_executable()
version_config_list = [
"v1/32k.json",
"v1/40k.json",
"v1/48k.json",
"v2/48k.json",
"v2/32k.json",
]
def singleton_variable(func):
def wrapper(*args, **kwargs):
if not wrapper.instance:
wrapper.instance = func(*args, **kwargs)
return wrapper.instance
wrapper.instance = None
return wrapper
@singleton_variable
class Config:
def __init__(self):
self.device = "cuda:0"
self.is_half = True
self.n_cpu = 0
self.gpu_name = None
self.json_config = self.load_config_json()
self.gpu_mem = None
(
self.python_cmd,
self.listen_port,
self.iscolab,
self.noparallel,
self.noautoopen,
self.paperspace,
self.is_cli,
self.grtheme,
self.dml,
) = self.arg_parse()
self.instead = ""
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
@staticmethod
def load_config_json() -> dict:
d = {}
for config_file in version_config_list:
with open(f"./assets/configs/{config_file}", "r") as f:
d[config_file] = json.load(f)
return d
@staticmethod
def arg_parse() -> tuple:
exe = sys.executable or "python"
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
parser.add_argument("--colab", action="store_true", help="Launch in colab")
parser.add_argument(
"--noparallel", action="store_true", help="Disable parallel processing"
)
parser.add_argument(
"--noautoopen",
action="store_true",
help="Do not open in browser automatically",
)
parser.add_argument(
"--paperspace",
action="store_true",
help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.",
)
parser.add_argument(
"--is_cli",
action="store_true",
help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!",
)
parser.add_argument(
"-t",
"--theme",
help = "Theme for Gradio. Format - `JohnSmith9982/small_and_pretty` (no backticks)",
default = "JohnSmith9982/small_and_pretty",
type = str
)
parser.add_argument(
"--dml",
action="store_true",
help="Use DirectML backend instead of CUDA."
)
cmd_opts = parser.parse_args()
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
return (
cmd_opts.pycmd,
cmd_opts.port,
cmd_opts.colab,
cmd_opts.noparallel,
cmd_opts.noautoopen,
cmd_opts.paperspace,
cmd_opts.is_cli,
cmd_opts.theme,
cmd_opts.dml,
)
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
# check `getattr` and try it for compatibility
@staticmethod
def has_mps() -> bool:
if not torch.backends.mps.is_available():
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
@staticmethod
def has_xpu() -> bool:
if hasattr(torch, "xpu") and torch.xpu.is_available():
return True
else:
return False
def use_fp32_config(self):
for config_file in version_config_list:
self.json_config[config_file]["train"]["fp16_run"] = False
def device_config(self) -> tuple:
if torch.cuda.is_available():
current_device = torch.cuda.current_device()
cuda_version = '.'.join(str(x) for x in torch.cuda.get_device_capability(torch.cuda.current_device()))
actual_vram = torch.cuda.get_device_properties(torch.cuda.current_device()).total_memory / (1024 ** 3)
if self.has_xpu():
self.device = self.instead = "xpu:0"
self.is_half = True
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (actual_vram is not None and actual_vram <= 1) or (1 < float(cuda_version) < 3.7):
logger.info("Using CPU due to unsupported CUDA version or low VRAM...")
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
self.device = self.instead = "cpu"
self.is_half = False
self.use_fp32_config()
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "P10" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
logger.info("Found GPU %s, force to fp32", self.gpu_name)
self.is_half = False
self.use_fp32_config()
else:
logger.info("Found GPU %s", self.gpu_name)
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open("lib/infer/modules/train/preprocess.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("lib/infer/modules/train/preprocess.py", "w") as f:
f.write(strr)
elif self.has_mps():
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "mps"
self.is_half = False
self.use_fp32_config()
else:
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "cpu"
self.is_half = False
self.use_fp32_config()
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem is not None and self.gpu_mem <= 4:
if self.gpu_mem == 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
elif self.gpu_mem <= 3:
x_pad = 1
x_query = 2
x_center = 16
x_max = 18
if self.dml:
logger.info("Use DirectML instead")
directml_dll_path = os.path.join(python_path, "Lib", "site-packages", "onnxruntime", "capi", "DirectML.dll")
if (
os.path.exists(
directml_dll_path
)
== False
):
pass
# if self.device != "cpu":
import torch_directml
self.device = torch_directml.device(torch_directml.default_device())
self.is_half = False
else:
if self.instead:
logger.info(f"Use {self.instead} instead")
providers_cuda_dll_path = os.path.join(python_path, "Lib", "site-packages", "onnxruntime", "capi", "onnxruntime_providers_cuda.dll")
if (
os.path.exists(
providers_cuda_dll_path
)
== False
):
pass
return x_pad, x_query, x_center, x_max
|