File size: 8,901 Bytes
74a334c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
##############################################################################################################
# Filename: app.py
# Description: A Streamlit application to test our implementation of the x4 model,
# as descirbed in the paper "Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data"
##############################################################################################################
#
# Import libraries.
#
import cv2
import numpy as np
import requests
import streamlit as st

from basicsr.archs.rrdbnet_arch import RRDBNet
from inference.real_esrgan import RealEsrGan
from io import BytesIO
from PIL import Image

##############################################################################################################


# Function to run inference using the RealEsrGan model.
def run_inference(
    uploaded_file,
    model_name="REALESRGAN_x4",
    output_path="inferences",
    upscale=4,
    extension="auto",
    device=None,
    gpu_id=None,
):
    try:
        # Create an RRDBNet model instance.
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=upscale,
        )

        # Set default model path based on the selected model name
        if model_name == None:
            model_path = "./models/REALESRGAN_x4.pth"
        elif model_name == "REALESRGAN_x4":
            model_path = "./models/REALESRGAN_x4.pth"
        elif model_name == "REALESRNET_x4":
            model_path = "./models/REALESRNET_x4.pth"

        # Create an RealEsrGan model instance.
        upsampler = RealEsrGan(
            scale=upscale,
            model_path=model_path,
            dni_weight=None,
            model=model,
            pre_pad=10,
            half=False,
            device=device,
            gpu_id=gpu_id,
        )

        # Process the input image.
        if hasattr(
            uploaded_file, "read"
        ):  # Check if it's a file uploaded from the local system.
            img_pil = Image.open(uploaded_file)
        elif uploaded_file.startswith("http"):  # If it is an image URL.
            response = requests.get(uploaded_file)
            img_pil = Image.open(BytesIO(response.content))
        else:
            st.warning(
                "Invalid input. Please provide either an image file or an image URL."
            )
            return

        # Convert PIL image to OpenCV format.
        img = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
        # Perform super-resolution using Real-ESRGAN.
        output, _ = upsampler.enhance(img, upscale=upscale)

        # Determine the file extension for saving the output image.
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = "RGBA"
            extension = "png"
        else:
            img_mode = None
            if extension == "auto":
                extension = "png"  # Default extension for images from URL.

        # Save the super resolution image
        save_path = f"{output_path}/{model_name}_inference.{extension}"
        cv2.imwrite(save_path, output)
    except Exception as e:
        st.error(e)
    return save_path


##############################################################################################################


# Function to apply local CSS.
def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)


##############################################################################################################
# Main function to create the Streamlit web application.
def main():
    try:
        # Load CSS.
        local_css("styles/style.css")

        # Title.
        title = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
                    Super Upscale Resolution with Real-ESRGAN</p>"""
        st.markdown(title, unsafe_allow_html=True)

        # Toggle button for displaying text input or file uploader.
        title = f"""<p style="font-family: monospace; color: white;">
                    Enter Image URL or Upload Image (checkbox):</p>"""
        st.markdown(title, unsafe_allow_html=True)

        use_image_url = st.checkbox(
            label="Enter Image URL or Upload Image:", label_visibility="collapsed"
        )

        # Input for image URL or file uploader based on the checkbox state.
        if use_image_url:
            image_url_label = f"""
                <p style="font-family: monospace; color: white;">Enter Image URL:</p>"""
            st.markdown(image_url_label, unsafe_allow_html=True)

            image_url = st.text_input(
                label="Enter Image URL:",
                value="",
                label_visibility="collapsed",
            )
        else:
            uploaded_file_label = f"""
                <p style="font-family: monospace; color: white;">Upload Image:</p>"""
            st.markdown(uploaded_file_label, unsafe_allow_html=True)
            uploaded_file = st.file_uploader(
                label="Upload Image:",
                type=["jpg", "png", "jpeg"],
                label_visibility="collapsed",
            )

        # Dropdown menu for model selection.
        model_name_label = f"""
                <p style="font-family: monospace; color: white;">Select Model:</p>"""
        st.markdown(model_name_label, unsafe_allow_html=True)

        model_name = st.selectbox(
            label="Select Model:",
            options=[
                "REALESRGAN_x4",
                "REALESRNET_x4",
            ],
            label_visibility="collapsed",
        )

        # Slider for upscale selection.
        model_name_label = f"""
                <p style="font-family: monospace; color: white;">Select Upscale Factor. Model works best with x4 upscale:</p>"""
        st.markdown(model_name_label, unsafe_allow_html=True)

        upscale = st.slider(
            label="Select Upscale Factor. Model works best with x4 upscale:",
            min_value=3,
            max_value=10,
            value=4,
            step=1,
            label_visibility="collapsed",
        )

        if not use_image_url and uploaded_file is not None:
            # Image caption.
            image_caption = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
                        Uploaded Image:</p>"""
            st.markdown(image_caption, unsafe_allow_html=True)
            st.image(uploaded_file)

        with st.spinner(
            text="Running Inference. May take up to 3 minutes. Please be patient..."
        ):
            if st.button("Run Inference"):
                if use_image_url and image_url != "":
                    result_path = run_inference(
                        uploaded_file=image_url,
                        model_name=model_name,
                        upscale=upscale,
                    )
                    # Image caption.
                    image_caption = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
                                Resulting Image:</p>"""
                    st.markdown(image_caption, unsafe_allow_html=True)
                    st.image(result_path)

                    st.success("Inference completed!")
                elif not use_image_url and uploaded_file is not None:
                    result_path = run_inference(
                        uploaded_file=uploaded_file,
                        model_name=model_name,
                        upscale=upscale,
                    )

                    # Image caption.
                    image_caption = f"""<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 2.3rem;">
                                Resulting Image:</p>"""
                    st.markdown(image_caption, unsafe_allow_html=True)
                    st.image(result_path)

                    st.success("Inference completed!")
                else:
                    st.warning("Please provide either an image file or an image URL.")

        # GitHub repository of this project.
        st.markdown(
            f"""
                <p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;">
                <b>Check out our <a href="https://github.com/GeorgiosIoannouCoder/realesrgan" style="color: #FAF9F6;">GitHub repository</a></b>
                </p>
            """,
            unsafe_allow_html=True,
        )
    except Exception as e:
        st.error(e)


##############################################################################################################

if __name__ == "__main__":
    main()
##############################################################################################################