Spaces:
Running
Running
File size: 9,803 Bytes
e73da9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import contextlib
import importlib
from inspect import isfunction
import os
import soundfile as sf
import time
import wave
import urllib.request
import progressbar
CACHE_DIR = os.getenv(
"AUDIOLDM_CACHE_DIR",
os.path.join(os.path.expanduser("~"), ".cache/audioldm"))
def get_duration(fname):
with contextlib.closing(wave.open(fname, 'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
return frames / float(rate)
def get_bit_depth(fname):
with contextlib.closing(wave.open(fname, 'r')) as f:
bit_depth = f.getsampwidth() * 8
return bit_depth
def get_time():
t = time.localtime()
return time.strftime("%d_%m_%Y_%H_%M_%S", t)
def seed_everything(seed):
import random, os
import numpy as np
import torch
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def save_wave(waveform, savepath, name="outwav"):
if type(name) is not list:
name = [name] * waveform.shape[0]
for i in range(waveform.shape[0]):
path = os.path.join(
savepath,
"%s_%s.wav"
% (
os.path.basename(name[i])
if (not ".wav" in name[i])
else os.path.basename(name[i]).split(".")[0],
i,
),
)
print("Save audio to %s" % path)
sf.write(path, waveform[i, 0], samplerate=16000)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def default_audioldm_config(model_name="audioldm-s-full"):
basic_config = {
"wave_file_save_path": "./output",
"id": {
"version": "v1",
"name": "default",
"root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml",
},
"preprocessing": {
"audio": {"sampling_rate": 16000, "max_wav_value": 32768},
"stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
"mel": {
"n_mel_channels": 64,
"mel_fmin": 0,
"mel_fmax": 8000,
"freqm": 0,
"timem": 0,
"blur": False,
"mean": -4.63,
"std": 2.74,
"target_length": 1024,
},
},
"model": {
"device": "cuda",
"target": "audioldm.pipline.LatentDiffusion",
"params": {
"base_learning_rate": 5e-06,
"linear_start": 0.0015,
"linear_end": 0.0195,
"num_timesteps_cond": 1,
"log_every_t": 200,
"timesteps": 1000,
"first_stage_key": "fbank",
"cond_stage_key": "waveform",
"latent_t_size": 256,
"latent_f_size": 16,
"channels": 8,
"cond_stage_trainable": True,
"conditioning_key": "film",
"monitor": "val/loss_simple_ema",
"scale_by_std": True,
"unet_config": {
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
"params": {
"image_size": 64,
"extra_film_condition_dim": 512,
"extra_film_use_concat": True,
"in_channels": 8,
"out_channels": 8,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
"use_spatial_transformer": True,
},
},
"first_stage_config": {
"base_learning_rate": 4.5e-05,
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
"params": {
"monitor": "val/rec_loss",
"image_key": "fbank",
"subband": 1,
"embed_dim": 8,
"time_shuffle": 1,
"ddconfig": {
"double_z": True,
"z_channels": 8,
"resolution": 256,
"downsample_time": False,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
},
},
},
"cond_stage_config": {
"target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2",
"params": {
"key": "waveform",
"sampling_rate": 16000,
"embed_mode": "audio",
"unconditional_prob": 0.1,
},
},
},
},
}
if("-l-" in model_name):
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256
basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64
elif("-m-" in model_name):
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192
basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST
return basic_config
def get_metadata():
return {
"audioldm-s-full": {
"path": os.path.join(
CACHE_DIR,
"audioldm-s-full.ckpt",
),
"url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1",
},
"audioldm-l-full": {
"path": os.path.join(
CACHE_DIR,
"audioldm-l-full.ckpt",
),
"url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1",
},
"audioldm-s-full-v2": {
"path": os.path.join(
CACHE_DIR,
"audioldm-s-full-v2.ckpt",
),
"url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1",
},
"audioldm-m-text-ft": {
"path": os.path.join(
CACHE_DIR,
"audioldm-m-text-ft.ckpt",
),
"url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1",
},
"audioldm-s-text-ft": {
"path": os.path.join(
CACHE_DIR,
"audioldm-s-text-ft.ckpt",
),
"url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1",
},
"audioldm-m-full": {
"path": os.path.join(
CACHE_DIR,
"audioldm-m-full.ckpt",
),
"url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1",
},
}
class MyProgressBar():
def __init__(self):
self.pbar = None
def __call__(self, block_num, block_size, total_size):
if not self.pbar:
self.pbar=progressbar.ProgressBar(maxval=total_size)
self.pbar.start()
downloaded = block_num * block_size
if downloaded < total_size:
self.pbar.update(downloaded)
else:
self.pbar.finish()
def download_checkpoint(checkpoint_name="audioldm-s-full"):
meta = get_metadata()
if(checkpoint_name not in meta.keys()):
print("The model name you provided is not supported. Please use one of the following: ", meta.keys())
if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9:
os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True)
print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}")
urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar())
print(
"Weights downloaded in: {} Size: {}".format(
meta[checkpoint_name]["path"],
os.path.getsize(meta[checkpoint_name]["path"]),
)
)
|