File size: 11,483 Bytes
e73da9c
 
 
 
 
 
 
 
 
 
 
 
19efc84
 
 
 
 
 
 
 
 
 
4397c18
19efc84
 
e73da9c
 
 
 
 
 
 
19efc84
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19efc84
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397c18
e73da9c
 
 
 
 
 
 
 
 
 
4397c18
e73da9c
 
19efc84
 
 
 
 
4397c18
19efc84
e73da9c
 
 
 
 
 
 
 
19efc84
e73da9c
 
 
 
 
 
4397c18
74e8f33
4397c18
e73da9c
4397c18
 
e73da9c
 
 
 
 
 
 
 
 
4397c18
e73da9c
 
 
 
 
 
 
4397c18
e73da9c
 
 
 
 
 
 
4397c18
e73da9c
 
 
 
 
 
4397c18
e73da9c
 
 
 
 
 
 
 
4397c18
 
e73da9c
 
 
 
 
83e4dcb
8684377
53217a2
 
 
 
 
 
8684377
 
 
e73da9c
 
 
 
 
 
 
 
 
 
 
53217a2
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92e08c4
d9a0d25
92e08c4
 
 
 
e73da9c
8684377
c8d986a
 
4397c18
 
 
 
c8d986a
 
 
 
 
 
 
 
e73da9c
 
 
 
 
 
8684377
c8d986a
 
8684377
e73da9c
 
 
 
 
 
b24ee49
c8d986a
e73da9c
 
 
 
 
 
53217a2
 
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19efc84
e73da9c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
import random
import torch
import torchaudio
from torch import inference_mode
from tempfile import NamedTemporaryFile
import numpy as np
from models import load_model
import utils
from inversion_utils import inversion_forward_process, inversion_reverse_process


# current_loaded_model = "cvssp/audioldm2-music"
# # current_loaded_model = "cvssp/audioldm2-music"

# ldm_stable = load_model(current_loaded_model, device, 200)  # deafult model
LDM2 = "cvssp/audioldm2"
MUSIC = "cvssp/audioldm2-music"
LDM2_LARGE = "cvssp/audioldm2-large"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ldm2 = load_model(model_id=LDM2, device=device)
ldm2_large = load_model(model_id=LDM2_LARGE, device=device)
ldm2_music = load_model(model_id=MUSIC, device=device)


def randomize_seed_fn(seed, randomize_seed):
    if randomize_seed:
        seed = random.randint(0, np.iinfo(np.int32).max)
    torch.manual_seed(seed)
    return seed


def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src):  # , ldm_stable):
    ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device)

    with inference_mode():
        w0 = ldm_stable.vae_encode(x0)

    # find Zs and wts - forward process
    _, zs, wts = inversion_forward_process(ldm_stable, w0, etas=1,
                                           prompts=[prompt_src],
                                           cfg_scales=[cfg_scale_src],
                                           prog_bar=True,
                                           num_inference_steps=num_diffusion_steps,
                                           numerical_fix=True)
    return zs, wts


def sample(ldm_stable, zs, wts, steps, prompt_tar, tstart, cfg_scale_tar):  # , ldm_stable):
    # reverse process (via Zs and wT)
    tstart = torch.tensor(tstart, dtype=torch.int)
    skip = steps - tstart
    w0, _ = inversion_reverse_process(ldm_stable, xT=wts, skips=steps - skip,
                                      etas=1., prompts=[prompt_tar],
                                      neg_prompts=[""], cfg_scales=[cfg_scale_tar],
                                      prog_bar=True,
                                      zs=zs[:int(steps - skip)])

    # vae decode image
    with inference_mode():
        x0_dec = ldm_stable.vae_decode(w0)
    if x0_dec.dim() < 4:
        x0_dec = x0_dec[None, :, :, :]

    with torch.no_grad():
        audio = ldm_stable.decode_to_mel(x0_dec)

    f = NamedTemporaryFile("wb", suffix=".wav", delete=False)
    torchaudio.save(f.name, audio, sample_rate=16000)

    return f.name



def edit(input_audio,
         model_id: str,
         do_inversion: bool,
         wts: gr.State, zs: gr.State, saved_inv_model: str,
         source_prompt="",
         target_prompt="",
         steps=200,
         cfg_scale_src=3.5,
         cfg_scale_tar=12,
         t_start=45,
         randomize_seed=True):

    print(model_id)
    if model_id == LDM2:
        ldm_stable = ldm2
    elif model_id == LDM2_LARGE:
        ldm_stable = ldm2_large
    else:  # MUSIC
        ldm_stable = ldm2_music

    # If the inversion was done for a different model, we need to re-run the inversion
    if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id):
        do_inversion = True

    x0 = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device)

    if do_inversion or randomize_seed:  # always re-run inversion
        zs_tensor, wts_tensor = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt,
                                       num_diffusion_steps=steps,
                                       cfg_scale_src=cfg_scale_src)
        wts = gr.State(value=wts_tensor)
        zs = gr.State(value=zs_tensor)
        saved_inv_model = model_id
        do_inversion = False

    # make sure t_start is in the right limit
    # t_start = change_tstart_range(t_start, steps)

    output = sample(ldm_stable, zs.value, wts.value, steps, prompt_tar=target_prompt,
                    tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar)

    return output, wts, zs, saved_inv_model, do_inversion


def get_example():
    case = [
        ['Examples/Beethoven.wav',
         '',
         'A recording of an arcade game soundtrack.',
         45,
         'cvssp/audioldm2-music',
         '27s',
         'Examples/Beethoven_arcade.wav',
         ],
        ['Examples/Beethoven.wav',
         'A high quality recording of wind instruments and strings playing.',
         'A high quality recording of a piano playing.',
         45,
         'cvssp/audioldm2-music',
         '27s',
         'Examples/Beethoven_piano.wav',
         ],
        ['Examples/ModalJazz.wav',
         'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.',
         'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.',
         45,
         'cvssp/audioldm2-music',
         '106s',
         'Examples/ModalJazz_banjo.wav',],
        ['Examples/Cat.wav',
         '',
         'A dog barking.',
         75,
         'cvssp/audioldm2-large',
         '10s',
         'Examples/Cat_dog.wav',]
    ]
    return case


intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> ZETA Editing 🎧 </h1>
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2>
<h3 style="margin-bottom: 10px; text-align: center;">
    <a href="https://arxiv.org/abs/2402.10009">[Paper]</a>&nbsp;|&nbsp;
    <a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a>&nbsp;|&nbsp;
    <a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a>
</h3>


<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" ></a>
</p>

"""

help = """
<b>Instructions:</b><br>
Provide an input audio and a target prompt to edit the audio. <br>
T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance.
Lower value -> favor fidelity. Higher value -> apply a stronger edit.<br>
Make sure that you use an AudioLDM2 version that is suitable for your input audio.
For example, use the music version for music and the large version for general audio.
</p>
<p style="font-size:larger">
You can additionally provide a source prompt to guide even further the editing process.
</p>
<p style="font-size:larger">Longer input will take more time.</p>

"""

with gr.Blocks(css='style.css') as demo:
    def reset_do_inversion():
        do_inversion = gr.State(value=True)
        return do_inversion
    gr.HTML(intro)
    wts = gr.State()
    zs = gr.State()
    saved_inv_model = gr.State()
    # current_loaded_model = gr.State(value="cvssp/audioldm2-music")
    # ldm_stable = load_model("cvssp/audioldm2-music", device, 200)
    # ldm_stable = gr.State(value=ldm_stable)
    do_inversion = gr.State(value=True)  # To save some runtime when editing the same thing over and over

    with gr.Group():
        gr.Markdown(" **note** 💡: input longer than **45 sec** is automatically trimmed")
        with gr.Row():
            input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio",
                                   interactive=True, scale=1)
            output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1)

    with gr.Row():
        tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output",
                                placeholder="a recording of a happy upbeat arcade game soundtrack",
                                lines=2, interactive=True)

    with gr.Row():
        t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3,
                            info="Lower T-start -> closer to original audio. Higher T-start -> stronger edit.")
        # model_id = gr.Radio(label="AudioLDM2 Version",
        model_id = gr.Dropdown(label="AudioLDM2 Version",
                               choices=["cvssp/audioldm2",
                                        "cvssp/audioldm2-large",
                                        "cvssp/audioldm2-music"],
                               info="Choose a checkpoint suitable for your intended audio and edit",
                               value="cvssp/audioldm2-music", interactive=True, type="value", scale=2)

    with gr.Row():
        with gr.Column():
            submit = gr.Button("Edit")

    with gr.Accordion("More Options", open=False):
        with gr.Row():
            src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True,
                                    info="Optional: Describe the original audio input",
                                    placeholder="A recording of a happy upbeat classical music piece",)

        with gr.Row():
            cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None,
                                      label="Source Guidance Scale", interactive=True, scale=1)
            cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None,
                                      label="Target Guidance Scale", interactive=True, scale=1)
            steps = gr.Number(value=50, step=1, minimum=20, maximum=300,
                              info="Higher values (e.g. 200) yield higher-quality generation.",
                              label="Num Diffusion Steps", interactive=True, scale=1)
        with gr.Row():
            seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
            randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
            length = gr.Number(label="Length", interactive=False, visible=False)

    with gr.Accordion("Help💡", open=False):
        gr.HTML(help)

    submit.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=[seed], queue=False).then(
           fn=edit,
           inputs=[input_audio,
                   model_id,
                   do_inversion,
                   #    current_loaded_model, ldm_stable,
                   wts, zs, saved_inv_model,
                   src_prompt,
                   tar_prompt,
                   steps,
                   cfg_scale_src,
                   cfg_scale_tar,
                   t_start,
                   randomize_seed
                   ],
           outputs=[output_audio, wts, zs, saved_inv_model, do_inversion]  # , current_loaded_model, ldm_stable],
        )

    # If sources changed we have to rerun inversion
    input_audio.change(fn=reset_do_inversion, outputs=[do_inversion])
    src_prompt.change(fn=reset_do_inversion, outputs=[do_inversion])
    model_id.change(fn=reset_do_inversion, outputs=[do_inversion])
    steps.change(fn=reset_do_inversion, outputs=[do_inversion])

    gr.Examples(
        label="Examples",
        examples=get_example(),
        inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio],
        outputs=[output_audio]
    )

    demo.queue()
    demo.launch()