File size: 24,742 Bytes
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef545f
c7c538f
 
 
 
9ef545f
 
 
a08fcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f3c3b
 
 
 
 
 
 
 
c7c538f
 
 
 
 
 
 
 
 
 
 
f1e4d0b
 
 
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
f1e4d0b
 
 
 
c7c538f
 
f1e4d0b
 
 
 
 
 
 
 
 
 
 
 
a08fcdc
 
 
f1e4d0b
a08fcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e4d0b
41f3c3b
f1e4d0b
41f3c3b
 
 
 
 
 
 
 
 
f1e4d0b
c7c538f
f1e4d0b
 
 
 
 
 
 
 
c7c538f
60950b2
 
 
 
 
 
 
 
 
c7c538f
 
 
 
 
 
60950b2
c7c538f
60950b2
c7c538f
 
41f3c3b
 
 
 
 
 
 
 
 
 
 
60950b2
 
 
41f3c3b
60950b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f3c3b
 
60950b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f3c3b
 
 
 
 
 
 
 
 
 
c7c538f
41f3c3b
c7c538f
 
 
41f3c3b
 
 
c7c538f
 
 
41f3c3b
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
 
 
 
 
 
 
a08fcdc
 
 
 
 
 
 
 
 
 
 
9132f59
a08fcdc
 
9132f59
 
 
 
a08fcdc
9132f59
a08fcdc
9132f59
 
a08fcdc
 
 
 
 
 
 
 
 
 
 
9132f59
a08fcdc
 
 
 
 
 
 
 
 
9132f59
a08fcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
 
 
a08fcdc
 
9132f59
c7c538f
 
f1e4d0b
c7c538f
 
 
 
 
 
 
 
 
 
9ef545f
 
 
 
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
 
f1e4d0b
c7c538f
 
 
 
 
 
 
 
 
9132f59
c7c538f
 
 
 
 
 
 
 
c7a87eb
 
 
c7c538f
 
 
 
 
 
 
9132f59
 
 
 
 
41f3c3b
9132f59
c7c538f
41f3c3b
 
 
 
 
 
c7c538f
 
 
 
41f3c3b
 
 
 
 
 
 
 
c7c538f
 
 
41f3c3b
 
 
 
 
c7c538f
a08fcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c538f
 
 
 
 
 
60950b2
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-bnb-4bit using unsloth
RESEARCH TRAINING PHASE ONLY - No output generation
WORKS WITH PRE-TOKENIZED DATASET - No re-tokenization
"""

import os
import json
import logging
import argparse
import numpy as np
from dotenv import load_dotenv
import torch
from datasets import load_dataset
import transformers
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForCausalLM, AutoConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig
from unsloth import FastLanguageModel

# Disable flash attention globally
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"

# Try to install flash-attention (for systems that support it)
try:
    import subprocess
    import sys
    
    logger = logging.getLogger(__name__)
    logger.info("Attempting to install flash-attention...")
    
    # Install flash-attention
    subprocess.check_call([sys.executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"])
    logger.info("Successfully installed flash-attention")
except Exception as e:
    logger.warning(f"Failed to install flash-attention: {e}")
    logger.info("Continuing without flash-attention")

# Check if tensorboard is available
try:
    import tensorboard
    TENSORBOARD_AVAILABLE = True
except ImportError:
    TENSORBOARD_AVAILABLE = False
    print("Tensorboard not available. Will skip tensorboard logging.")

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler("training.log")
    ]
)
logger = logging.getLogger(__name__)

# Default dataset path - use the correct path with username
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"

def load_config(config_path):
    """Load the transformers config from JSON file"""
    logger.info(f"Loading config from {config_path}")
    with open(config_path, 'r') as f:
        config = json.load(f)
    return config

def load_and_prepare_dataset(dataset_name, config):
    """
    Load and prepare the dataset for fine-tuning.
    Sort entries by prompt_number as required.
    NO TOKENIZATION - DATASET IS ALREADY TOKENIZED
    """
    # Use the default dataset path if no specific path is provided
    if dataset_name == "phi4-cognitive-dataset":
        dataset_name = DEFAULT_DATASET
        
    logger.info(f"Loading dataset: {dataset_name}")
    
    try:
        # Load dataset
        dataset = load_dataset(dataset_name)
        
        # Extract the split we want to use (usually 'train')
        if 'train' in dataset:
            dataset = dataset['train']
        
        # Get the dataset config
        dataset_config = config.get("dataset_config", {})
        sort_field = dataset_config.get("sort_by_field", "prompt_number")
        
        # Always sort in ascending order by prompt_number
        logger.info(f"Sorting dataset by {sort_field} in ascending order")
        dataset = dataset.sort(sort_field)
        
        # Verify sorting
        if len(dataset) > 1:
            first_prompt = dataset[0].get(sort_field, None)
            last_prompt = dataset[-1].get(sort_field, None)
            logger.info(f"Dataset sorted: first {sort_field}={first_prompt}, last {sort_field}={last_prompt}")
            
            # Additional verification of a few samples
            sample_indices = [0, len(dataset)//2, len(dataset)-1]
            sample_prompts = [dataset[i].get(sort_field, None) for i in sample_indices]
            logger.info(f"Sample prompt numbers: {sample_prompts}")
            
            # Verify order is ascending
            if not all(sample_prompts[i] <= sample_prompts[i+1] for i in range(len(sample_prompts)-1)):
                logger.warning("Dataset may not be properly sorted! Please check the ordering.")
        
        # Print dataset structure for debugging
        logger.info(f"Dataset loaded with {len(dataset)} entries")
        logger.info(f"Dataset columns: {dataset.column_names}")
        
        # Print a sample entry to understand structure
        if len(dataset) > 0:
            sample = dataset[0]
            logger.info(f"Sample entry structure: {list(sample.keys())}")
            if 'conversations' in sample:
                logger.info(f"Sample conversations structure: {sample['conversations'][:1]}")
                
        return dataset
    
    except Exception as e:
        logger.error(f"Error loading dataset: {str(e)}")
        logger.info("Available datasets in the Hub:")
        # Print a more helpful error message
        print(f"Failed to load dataset: {dataset_name}")
        print(f"Make sure the dataset exists and is accessible.")
        print(f"If it's a private dataset, ensure your HF_TOKEN has access to it.")
        raise

def tokenize_string(text, tokenizer):
    """Tokenize a string using the provided tokenizer"""
    if not text:
        return []
    
    # Tokenize the text
    tokens = tokenizer.encode(text, add_special_tokens=False)
    return tokens

# Data collator for pre-tokenized dataset
class PreTokenizedCollator(DataCollatorMixin):
    """
    Data collator for pre-tokenized datasets.
    Expects input_ids and labels already tokenized.
    """
    def __init__(self, pad_token_id=0, tokenizer=None):
        self.pad_token_id = pad_token_id
        self.tokenizer = tokenizer  # Keep a reference to the tokenizer for string conversion
        
    def __call__(self, features):
        # Print a sample feature to understand structure
        if len(features) > 0:
            logger.info(f"Sample feature keys: {list(features[0].keys())}")
            
        # Extract input_ids from conversations if needed
        processed_features = []
        for feature in features:
            # If input_ids is not directly available, try to extract from conversations
            if 'input_ids' not in feature and 'conversations' in feature:
                # Extract from conversations based on your dataset structure
                conversations = feature['conversations']
                
                # Debug the conversations structure
                logger.info(f"Conversations type: {type(conversations)}")
                if isinstance(conversations, list) and len(conversations) > 0:
                    logger.info(f"First conversation type: {type(conversations[0])}")
                    logger.info(f"First conversation: {conversations[0]}")
                
                # Try different approaches to extract input_ids
                if isinstance(conversations, list) and len(conversations) > 0:
                    # Case 1: If conversations is a list of dicts with 'content' field
                    if isinstance(conversations[0], dict) and 'content' in conversations[0]:
                        content = conversations[0]['content']
                        logger.info(f"Found content field: {type(content)}")
                        
                        # If content is a string, tokenize it
                        if isinstance(content, str) and self.tokenizer:
                            logger.info(f"Tokenizing string content: {content[:50]}...")
                            feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
                        # If content is already a list of integers, use it directly
                        elif isinstance(content, list) and all(isinstance(x, int) for x in content):
                            feature['input_ids'] = content
                        # If content is already tokenized in some other format
                        else:
                            logger.warning(f"Unexpected content format: {type(content)}")
                            
                    # Case 2: If conversations is a list of dicts with 'input_ids' field
                    elif isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
                        feature['input_ids'] = conversations[0]['input_ids']
                    
                    # Case 3: If conversations itself contains the input_ids
                    elif all(isinstance(x, int) for x in conversations):
                        feature['input_ids'] = conversations
                    
                    # Case 4: If conversations is a list of strings
                    elif all(isinstance(x, str) for x in conversations) and self.tokenizer:
                        # Join all strings and tokenize
                        full_text = " ".join(conversations)
                        feature['input_ids'] = self.tokenizer.encode(full_text, add_special_tokens=False)
            
            # Ensure input_ids is a list of integers
            if 'input_ids' in feature:
                # If input_ids is a string, tokenize it
                if isinstance(feature['input_ids'], str) and self.tokenizer:
                    logger.info(f"Converting string input_ids to tokens: {feature['input_ids'][:50]}...")
                    feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
                # If input_ids is not a list, convert it
                elif not isinstance(feature['input_ids'], list):
                    try:
                        feature['input_ids'] = list(feature['input_ids'])
                    except:
                        logger.error(f"Could not convert input_ids to list: {type(feature['input_ids'])}")
            
            processed_features.append(feature)
            
        # If we still don't have input_ids, log an error
        if len(processed_features) > 0 and 'input_ids' not in processed_features[0]:
            logger.error(f"Could not find input_ids in features. Available keys: {list(processed_features[0].keys())}")
            if 'conversations' in processed_features[0]:
                logger.error(f"Conversations structure: {processed_features[0]['conversations'][:1]}")
            raise ValueError("Could not find input_ids in dataset. Please check dataset structure.")
            
        # Determine max length in this batch
        batch_max_len = max(len(x["input_ids"]) for x in processed_features)
        
        # Initialize batch tensors
        batch = {
            "input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
            "attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
            "labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100  # -100 is ignored in loss
        }
        
        # Fill batch tensors
        for i, feature in enumerate(processed_features):
            input_ids = feature["input_ids"]
            seq_len = len(input_ids)
            
            # Convert to tensor if it's a list
            if isinstance(input_ids, list):
                input_ids = torch.tensor(input_ids, dtype=torch.long)
                
            # Copy data to batch tensors
            batch["input_ids"][i, :seq_len] = input_ids
            batch["attention_mask"][i, :seq_len] = 1
            
            # If there are labels, use them, otherwise use input_ids
            if "labels" in feature:
                labels = feature["labels"]
                if isinstance(labels, list):
                    labels = torch.tensor(labels, dtype=torch.long)
                batch["labels"][i, :len(labels)] = labels
            else:
                batch["labels"][i, :seq_len] = input_ids
        
        return batch

def create_training_marker(output_dir):
    """Create a marker file to indicate training is active"""
    # Create in current directory for app.py to find
    with open("TRAINING_ACTIVE", "w") as f:
        f.write(f"Training active in {output_dir}")
    
    # Also create in output directory
    os.makedirs(output_dir, exist_ok=True)
    with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
        f.write("This model is for research training only. No interactive outputs.")

def remove_training_marker():
    """Remove the training marker file"""
    if os.path.exists("TRAINING_ACTIVE"):
        os.remove("TRAINING_ACTIVE")
        logger.info("Removed training active marker")

def load_model_safely(model_name, max_seq_length, dtype=None):
    """
    Load the model in a safe way that works with Qwen models
    by trying different loading strategies.
    """
    try:
        logger.info(f"Attempting to load model with unsloth optimizations: {model_name}")
        
        # Create BitsAndBytesConfig for 4-bit quantization
        from transformers import BitsAndBytesConfig
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )
        
        # First try loading with unsloth but without flash attention
        try:
            logger.info("Loading model with unsloth optimizations")
            # Don't pass any flash attention parameters to unsloth
            model, tokenizer = FastLanguageModel.from_pretrained(
                model_name=model_name,
                max_seq_length=max_seq_length,
                dtype=dtype,
                quantization_config=bnb_config
            )
            logger.info("Model loaded successfully with unsloth")
            return model, tokenizer
            
        except Exception as e:
            logger.warning(f"Unsloth loading failed: {e}")
            logger.info("Falling back to standard Hugging Face loading...")
            
            # We'll try two approaches with HF loading
            
            # Approach 1: Using attn_implementation parameter (newer method)
            try:
                logger.info("Trying HF loading with attn_implementation parameter")
                config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
                tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
                
                # The proper way to disable flash attention in newer transformers
                model = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    config=config,
                    device_map="auto",
                    torch_dtype=dtype or torch.float16,
                    quantization_config=bnb_config,
                    trust_remote_code=True,
                    attn_implementation="eager"  # Use eager instead of flash_attention_2
                )
                logger.info("Model loaded successfully with HF using attn_implementation='eager'")
                return model, tokenizer
                
            except Exception as e:
                logger.warning(f"HF loading with attn_implementation failed: {e}")
                logger.info("Trying fallback method...")
                
                # Approach 2: Complete fallback with minimal parameters
                config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
                tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
                
                # Most basic loading without any attention parameters
                model = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    config=config,
                    device_map="auto",
                    torch_dtype=dtype or torch.float16,
                    quantization_config=bnb_config,
                    trust_remote_code=True
                )
                logger.info("Model loaded successfully with basic HF loading")
                return model, tokenizer
                
    except Exception as e:
        logger.error(f"All model loading attempts failed: {e}")
        raise

def train(config_path, dataset_name, output_dir):
    """Main training function - RESEARCH TRAINING PHASE ONLY"""
    # Load environment variables
    load_dotenv()
    config = load_config(config_path)
    
    # Extract configs
    model_config = config.get("model_config", {})
    training_config = config.get("training_config", {})
    hardware_config = config.get("hardware_config", {})
    lora_config = config.get("lora_config", {})
    dataset_config = config.get("dataset_config", {})
    
    # Override flash attention setting to disable it
    hardware_config["use_flash_attention"] = False
    logger.info("Flash attention has been DISABLED due to GPU compatibility issues")
    
    # Verify this is training phase only
    training_phase_only = dataset_config.get("training_phase_only", True)
    if not training_phase_only:
        logger.warning("This script is meant for research training phase only")
        logger.warning("Setting training_phase_only=True")
    
    # Verify dataset is pre-tokenized
    logger.info("IMPORTANT: Using pre-tokenized dataset - No tokenization will be performed")
    
    # Set the output directory
    output_dir = output_dir or training_config.get("output_dir", "fine_tuned_model")
    os.makedirs(output_dir, exist_ok=True)
    
    # Create training marker
    create_training_marker(output_dir)
    
    try:
        # Print configuration summary
        logger.info("RESEARCH TRAINING PHASE ACTIVE - No output generation")
        logger.info("Configuration Summary:")
        model_name = model_config.get("model_name_or_path")
        logger.info(f"Model: {model_name}")
        logger.info(f"Dataset: {dataset_name if dataset_name != 'phi4-cognitive-dataset' else DEFAULT_DATASET}")
        logger.info(f"Output directory: {output_dir}")
        logger.info("IMPORTANT: Using already 4-bit quantized model - not re-quantizing")
        
        # Load and prepare the dataset
        dataset = load_and_prepare_dataset(dataset_name, config)
        
        # Initialize tokenizer (just for model initialization, not for tokenizing data)
        logger.info("Loading tokenizer (for model initialization only, not for tokenizing data)")
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True
        )
        tokenizer.pad_token = tokenizer.eos_token
        
        # Initialize model with unsloth
        logger.info("Initializing model with unsloth (preserving 4-bit quantization)")
        max_seq_length = training_config.get("max_seq_length", 2048)
        
        # Create LoRA config directly
        logger.info("Creating LoRA configuration")
        lora_config_obj = LoraConfig(
            r=lora_config.get("r", 16),
            lora_alpha=lora_config.get("lora_alpha", 32),
            lora_dropout=lora_config.get("lora_dropout", 0.05),
            bias=lora_config.get("bias", "none"),
            target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
        )
        
        # Initialize model with our safe loading function
        logger.info("Loading pre-quantized model safely")
        dtype = torch.float16 if hardware_config.get("fp16", True) else None
        model, tokenizer = load_model_safely(model_name, max_seq_length, dtype)
        
        # Try different approaches to apply LoRA
        logger.info("Applying LoRA to model")
        
        # Skip unsloth's method and go directly to PEFT
        logger.info("Using standard PEFT method to apply LoRA")
        from peft import get_peft_model
        model = get_peft_model(model, lora_config_obj)
        logger.info("Successfully applied LoRA with standard PEFT")
            
        # No need to format the dataset - it's already pre-tokenized
        logger.info("Using pre-tokenized dataset - skipping tokenization step")
        training_dataset = dataset
        
        # Configure reporting backends with fallbacks
        reports = []
        if TENSORBOARD_AVAILABLE:
            reports.append("tensorboard")
            logger.info("Tensorboard available and enabled for reporting")
        else:
            logger.warning("Tensorboard not available - metrics won't be logged to tensorboard")
            
        if os.getenv("WANDB_API_KEY"):
            reports.append("wandb")
            logger.info("Wandb API key found, enabling wandb reporting")
        
        # Default to "none" if no reporting backends are available
        if not reports:
            reports = ["none"]
            logger.warning("No reporting backends available - training metrics won't be logged")
        
        # Set up training arguments with correct parameters
        # Extract only the valid parameters from hardware_config
        training_args_dict = {
            "output_dir": output_dir,
            "num_train_epochs": training_config.get("num_train_epochs", 3),
            "per_device_train_batch_size": training_config.get("per_device_train_batch_size", 2),
            "gradient_accumulation_steps": training_config.get("gradient_accumulation_steps", 4),
            "learning_rate": training_config.get("learning_rate", 2e-5),
            "lr_scheduler_type": training_config.get("lr_scheduler_type", "cosine"),
            "warmup_ratio": training_config.get("warmup_ratio", 0.03),
            "weight_decay": training_config.get("weight_decay", 0.01),
            "optim": training_config.get("optim", "adamw_torch"),
            "logging_steps": training_config.get("logging_steps", 10),
            "save_steps": training_config.get("save_steps", 200),
            "save_total_limit": training_config.get("save_total_limit", 3),
            "fp16": hardware_config.get("fp16", True),
            "bf16": hardware_config.get("bf16", False),
            "max_grad_norm": training_config.get("max_grad_norm", 0.3),
            "report_to": reports,
            "logging_first_step": training_config.get("logging_first_step", True),
            "disable_tqdm": training_config.get("disable_tqdm", False),
            "remove_unused_columns": False,
            "shuffle_buffer_size": 1,
            "seed": 42
        }
        
        # Create TrainingArguments with validated parameters
        training_args = TrainingArguments(**training_args_dict)
        
        # Create trainer with pre-tokenized collator
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=training_dataset,
            data_collator=PreTokenizedCollator(pad_token_id=tokenizer.pad_token_id, tokenizer=tokenizer),
        )
        
        # Start training
        logger.info("Starting training - RESEARCH PHASE ONLY")
        trainer.train()
        
        # Save the model
        logger.info(f"Saving model to {output_dir}")
        trainer.save_model(output_dir)
        
        # Save LoRA adapter separately for easier deployment
        lora_output_dir = os.path.join(output_dir, "lora_adapter")
        model.save_pretrained(lora_output_dir)
        logger.info(f"Saved LoRA adapter to {lora_output_dir}")
        
        # Save tokenizer for completeness
        tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
        tokenizer.save_pretrained(tokenizer_output_dir)
        logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
        
        # Copy config file for reference
        with open(os.path.join(output_dir, "training_config.json"), "w") as f:
            json.dump(config, f, indent=2)
        
        logger.info("Training complete - RESEARCH PHASE ONLY")
        return output_dir
    
    finally:
        # Always remove the training marker when done
        remove_training_marker()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fine-tune Unsloth/DeepSeek-R1-Distill-Qwen-14B-4bit model (RESEARCH ONLY)")
    parser.add_argument("--config", type=str, default="transformers_config.json", 
                        help="Path to the transformers config JSON file")
    parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset", 
                        help="Dataset name or path")
    parser.add_argument("--output_dir", type=str, default=None, 
                        help="Output directory for the fine-tuned model")
    
    args = parser.parse_args()
    
    # Run training - Research phase only
    try:
        output_path = train(args.config, args.dataset, args.output_dir)
        print(f"Research training completed. Model saved to: {output_path}")
    except Exception as e:
        logger.error(f"Training failed: {str(e)}")
        remove_training_marker()  # Clean up marker if training fails
        raise