File size: 16,003 Bytes
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python

"""

Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit

- Optimized for L40S GPU

- Works with pre-tokenized datasets

- Research training only (no inference)

"""

import os
import logging
import json
import torch
import argparse
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, AutoConfig, BitsAndBytesConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig, get_peft_model
from dotenv import load_dotenv

# Basic environment setup for L40S
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Create a marker file to indicate training is active
def create_training_marker(output_dir):
    os.makedirs(output_dir, exist_ok=True)
    with open("TRAINING_ACTIVE", "w") as f:
        f.write(f"Training active in {output_dir}")
    
    with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
        f.write("This model is for research training only. No interactive outputs.")

# Remove the training marker file
def remove_training_marker():
    if os.path.exists("TRAINING_ACTIVE"):
        os.remove("TRAINING_ACTIVE")
        logger.info("Removed training active marker")

# Custom data collator for pre-tokenized data
class PreTokenizedCollator(DataCollatorMixin):
    def __init__(self, pad_token_id=0, tokenizer=None):
        self.pad_token_id = pad_token_id
        self.tokenizer = tokenizer  # Keep reference to tokenizer for fallback
        
    def __call__(self, features):
        # Extract features properly from the batch
        processed_features = []
        for feature in features:
            # If input_ids is directly available, use it
            if 'input_ids' in feature and isinstance(feature['input_ids'], list):
                processed_features.append(feature)
                continue
                
            # If input_ids is not available, try to extract from conversations
            if 'input_ids' not in feature and 'conversations' in feature:
                conversations = feature['conversations']
                
                if isinstance(conversations, list) and len(conversations) > 0:
                    # Case 1: If conversations has 'input_ids' field (pre-tokenized)
                    if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
                        feature['input_ids'] = conversations[0]['input_ids']
                    
                    # Case 2: If conversations itself contains input_ids
                    elif all(isinstance(x, int) for x in conversations):
                        feature['input_ids'] = conversations
                    
                    # Case 3: If conversations has 'content' field
                    elif isinstance(conversations[0], dict) and 'content' in conversations[0]:
                        content = conversations[0]['content']
                        
                        # If content is already tokens, use directly
                        if isinstance(content, list) and all(isinstance(x, int) for x in content):
                            feature['input_ids'] = content
                        # If content is a string and we have tokenizer, tokenize as fallback
                        elif isinstance(content, str) and self.tokenizer:
                            logger.warning("Tokenizing string content as fallback")
                            feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
            
            # Ensure input_ids is present and is a list of integers
            if 'input_ids' in feature:
                if isinstance(feature['input_ids'], str) and self.tokenizer:
                    feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
                elif not isinstance(feature['input_ids'], list):
                    try:
                        feature['input_ids'] = list(feature['input_ids'])
                    except Exception as e:
                        logger.error(f"Could not convert input_ids to list: {e}")
                        continue
                
                processed_features.append(feature)
        
        if len(processed_features) == 0:
            raise ValueError("No valid examples found. Check dataset structure.")
            
        # Determine max length in this batch
        batch_max_len = max(len(x["input_ids"]) for x in processed_features)
        
        # Initialize batch tensors
        batch = {
            "input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
            "attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
            "labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100  # -100 is ignored in loss
        }
        
        # Fill batch tensors
        for i, feature in enumerate(processed_features):
            input_ids = feature["input_ids"]
            seq_len = len(input_ids)
            
            # Convert to tensor if it's a list
            if isinstance(input_ids, list):
                input_ids = torch.tensor(input_ids, dtype=torch.long)
                
            # Copy data to batch tensors
            batch["input_ids"][i, :seq_len] = input_ids
            batch["attention_mask"][i, :seq_len] = 1
            
            # If there are labels, use them, otherwise use input_ids
            if "labels" in feature:
                labels = feature["labels"]
                if isinstance(labels, list):
                    labels = torch.tensor(labels, dtype=torch.long)
                batch["labels"][i, :len(labels)] = labels
            else:
                batch["labels"][i, :seq_len] = input_ids
        
        return batch

# Load and prepare dataset with proper sorting
def load_and_prepare_dataset(dataset_name, config):
    """Load and prepare the dataset for fine-tuning with proper sorting"""
    logger.info(f"Loading dataset: {dataset_name}")
    
    try:
        # Load dataset
        dataset = load_dataset(dataset_name)
        
        # Extract the split we want to use (usually 'train')
        if 'train' in dataset:
            dataset = dataset['train']
        
        # Get the dataset config
        dataset_config = config.get("dataset_config", {})
        sort_field = dataset_config.get("sort_by_field", "prompt_number")
        
        # Sort in ascending order by specified field
        logger.info(f"Sorting dataset by {sort_field} in ascending order")
        dataset = dataset.sort(sort_field)
        
        # Print dataset info
        logger.info(f"Dataset loaded with {len(dataset)} entries")
        logger.info(f"Dataset columns: {dataset.column_names}")
        
        # Print sample for debugging
        if len(dataset) > 0:
            logger.info(f"Sample entry structure: {list(dataset[0].keys())}")
        
        return dataset
    
    except Exception as e:
        logger.error(f"Error loading dataset: {str(e)}")
        raise

# Main training function
def train(config_path, dataset_name, output_dir):
    # Load environment variables
    load_dotenv()
    
    # Load config
    with open(config_path, 'r') as f:
        config = json.load(f)
    
    # Create training marker
    create_training_marker(output_dir)
    
    try:
        # Extract configs
        model_config = config.get("model_config", {})
        training_config = config.get("training_config", {})
        hardware_config = config.get("hardware_config", {})
        lora_config = config.get("lora_config", {})
        dataset_config = config.get("dataset_config", {})
        
        # Load and prepare dataset with proper sorting
        dataset = load_and_prepare_dataset(dataset_name, config)
        
        # Load model settings
        model_name = model_config.get("model_name_or_path")
        logger.info(f"Using model: {model_name}")
        
        # Initialize tokenizer
        logger.info("Loading tokenizer")
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, 
            trust_remote_code=True
        )
        tokenizer.pad_token = tokenizer.eos_token
        
        # Create quantization config
        quant_config = config.get("quantization_config", {})
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=quant_config.get("load_in_4bit", True),
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"),
            bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True)
        )
        
        # Create model with proper configuration
        logger.info("Loading pre-quantized model")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            quantization_config=bnb_config,
            device_map="auto",
            torch_dtype=torch.float16,
            trust_remote_code=True,
            use_cache=model_config.get("use_cache", False),
            attn_implementation=hardware_config.get("attn_implementation", "eager")
        )
        
        # Apply rope scaling if configured
        if "rope_scaling" in model_config:
            logger.info(f"Applying rope scaling: {model_config['rope_scaling']}")
            if hasattr(model.config, "rope_scaling"):
                model.config.rope_scaling = model_config["rope_scaling"]
        
        # Create LoRA config
        logger.info("Creating LoRA configuration")
        lora_config_obj = LoraConfig(
            r=lora_config.get("r", 16),
            lora_alpha=lora_config.get("lora_alpha", 32),
            lora_dropout=lora_config.get("lora_dropout", 0.05),
            bias=lora_config.get("bias", "none"),
            target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
        )
        
        # Apply LoRA to model
        logger.info("Applying LoRA to model")
        model = get_peft_model(model, lora_config_obj)
        logger.info("Successfully applied LoRA")
        
        # Check for L40S GPU and optimize batch size
        if torch.cuda.is_available():
            gpu_info = torch.cuda.get_device_properties(0)
            logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
            
            # Check if it's an L40S or high-memory GPU
            if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9:
                logger.info("Detected L40S GPU - optimizing for high-memory GPU")
                per_device_train_batch_size = training_config.get("per_device_train_batch_size", 4)
            else:
                # Use a smaller batch size for other GPUs
                per_device_train_batch_size = 2
                logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
        else:
            per_device_train_batch_size = 1
            logger.warning("No GPU detected - using minimal batch size")
        
        # Configure reporting backends
        reports = training_config.get("report_to", ["tensorboard"])
        
        # Create training arguments
        logger.info("Creating training arguments")
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=training_config.get("num_train_epochs", 3),
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=training_config.get("gradient_accumulation_steps", 4),
            learning_rate=training_config.get("learning_rate", 2e-5),
            lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
            warmup_ratio=training_config.get("warmup_ratio", 0.03),
            weight_decay=training_config.get("weight_decay", 0.01),
            optim=training_config.get("optim", "adamw_torch"),
            fp16=hardware_config.get("fp16", True),
            bf16=hardware_config.get("bf16", False),
            max_grad_norm=training_config.get("max_grad_norm", 0.3),
            logging_steps=training_config.get("logging_steps", 10),
            save_steps=training_config.get("save_steps", 200),
            save_total_limit=training_config.get("save_total_limit", 3),
            evaluation_strategy=training_config.get("evaluation_strategy", "steps"),
            eval_steps=training_config.get("eval_steps", 200),
            load_best_model_at_end=training_config.get("load_best_model_at_end", True),
            report_to=reports,
            logging_first_step=training_config.get("logging_first_step", True),
            disable_tqdm=training_config.get("disable_tqdm", False),
            remove_unused_columns=False,
            gradient_checkpointing=hardware_config.get("gradient_checkpointing", True),
            dataloader_num_workers=training_config.get("dataloader_num_workers", 4)
        )
        
        # Create trainer with pre-tokenized collator
        logger.info("Creating trainer with pre-tokenized collator")
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=dataset,
            data_collator=PreTokenizedCollator(
                pad_token_id=tokenizer.pad_token_id, 
                tokenizer=tokenizer
            ),
        )
        
        # Start training
        logger.info("Starting training - RESEARCH PHASE ONLY")
        trainer.train()
        
        # Save the model
        logger.info(f"Saving model to {output_dir}")
        trainer.save_model(output_dir)
        
        # Save LoRA adapter separately
        lora_output_dir = os.path.join(output_dir, "lora_adapter")
        model.save_pretrained(lora_output_dir)
        logger.info(f"Saved LoRA adapter to {lora_output_dir}")
        
        # Save tokenizer
        tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
        tokenizer.save_pretrained(tokenizer_output_dir)
        logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
        
        # Save config for reference
        with open(os.path.join(output_dir, "training_config.json"), "w") as f:
            json.dump(config, f, indent=2)
        
        logger.info("Training complete - RESEARCH PHASE ONLY")
        return output_dir
    
    finally:
        # Always remove the training marker when done
        remove_training_marker()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)")
    parser.add_argument("--config", type=str, default="transformers_config.json", 
                      help="Path to the configuration file")
    parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset", 
                      help="Dataset name or path")
    parser.add_argument("--output_dir", type=str, default="fine_tuned_model", 
                      help="Output directory for the fine-tuned model")
    
    args = parser.parse_args()
    
    try:
        output_path = train(args.config, args.dataset, args.output_dir)
        print(f"Research training completed. Model saved to: {output_path}")
    except Exception as e:
        logging.error(f"Training failed: {str(e)}")
        remove_training_marker()  # Clean up marker if training fails
        raise