Spaces:
Sleeping
Sleeping
File size: 16,003 Bytes
467f05c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#!/usr/bin/env python
"""
Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
- Optimized for L40S GPU
- Works with pre-tokenized datasets
- Research training only (no inference)
"""
import os
import logging
import json
import torch
import argparse
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, AutoConfig, BitsAndBytesConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig, get_peft_model
from dotenv import load_dotenv
# Basic environment setup for L40S
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Create a marker file to indicate training is active
def create_training_marker(output_dir):
os.makedirs(output_dir, exist_ok=True)
with open("TRAINING_ACTIVE", "w") as f:
f.write(f"Training active in {output_dir}")
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
f.write("This model is for research training only. No interactive outputs.")
# Remove the training marker file
def remove_training_marker():
if os.path.exists("TRAINING_ACTIVE"):
os.remove("TRAINING_ACTIVE")
logger.info("Removed training active marker")
# Custom data collator for pre-tokenized data
class PreTokenizedCollator(DataCollatorMixin):
def __init__(self, pad_token_id=0, tokenizer=None):
self.pad_token_id = pad_token_id
self.tokenizer = tokenizer # Keep reference to tokenizer for fallback
def __call__(self, features):
# Extract features properly from the batch
processed_features = []
for feature in features:
# If input_ids is directly available, use it
if 'input_ids' in feature and isinstance(feature['input_ids'], list):
processed_features.append(feature)
continue
# If input_ids is not available, try to extract from conversations
if 'input_ids' not in feature and 'conversations' in feature:
conversations = feature['conversations']
if isinstance(conversations, list) and len(conversations) > 0:
# Case 1: If conversations has 'input_ids' field (pre-tokenized)
if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
feature['input_ids'] = conversations[0]['input_ids']
# Case 2: If conversations itself contains input_ids
elif all(isinstance(x, int) for x in conversations):
feature['input_ids'] = conversations
# Case 3: If conversations has 'content' field
elif isinstance(conversations[0], dict) and 'content' in conversations[0]:
content = conversations[0]['content']
# If content is already tokens, use directly
if isinstance(content, list) and all(isinstance(x, int) for x in content):
feature['input_ids'] = content
# If content is a string and we have tokenizer, tokenize as fallback
elif isinstance(content, str) and self.tokenizer:
logger.warning("Tokenizing string content as fallback")
feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
# Ensure input_ids is present and is a list of integers
if 'input_ids' in feature:
if isinstance(feature['input_ids'], str) and self.tokenizer:
feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
elif not isinstance(feature['input_ids'], list):
try:
feature['input_ids'] = list(feature['input_ids'])
except Exception as e:
logger.error(f"Could not convert input_ids to list: {e}")
continue
processed_features.append(feature)
if len(processed_features) == 0:
raise ValueError("No valid examples found. Check dataset structure.")
# Determine max length in this batch
batch_max_len = max(len(x["input_ids"]) for x in processed_features)
# Initialize batch tensors
batch = {
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
}
# Fill batch tensors
for i, feature in enumerate(processed_features):
input_ids = feature["input_ids"]
seq_len = len(input_ids)
# Convert to tensor if it's a list
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids, dtype=torch.long)
# Copy data to batch tensors
batch["input_ids"][i, :seq_len] = input_ids
batch["attention_mask"][i, :seq_len] = 1
# If there are labels, use them, otherwise use input_ids
if "labels" in feature:
labels = feature["labels"]
if isinstance(labels, list):
labels = torch.tensor(labels, dtype=torch.long)
batch["labels"][i, :len(labels)] = labels
else:
batch["labels"][i, :seq_len] = input_ids
return batch
# Load and prepare dataset with proper sorting
def load_and_prepare_dataset(dataset_name, config):
"""Load and prepare the dataset for fine-tuning with proper sorting"""
logger.info(f"Loading dataset: {dataset_name}")
try:
# Load dataset
dataset = load_dataset(dataset_name)
# Extract the split we want to use (usually 'train')
if 'train' in dataset:
dataset = dataset['train']
# Get the dataset config
dataset_config = config.get("dataset_config", {})
sort_field = dataset_config.get("sort_by_field", "prompt_number")
# Sort in ascending order by specified field
logger.info(f"Sorting dataset by {sort_field} in ascending order")
dataset = dataset.sort(sort_field)
# Print dataset info
logger.info(f"Dataset loaded with {len(dataset)} entries")
logger.info(f"Dataset columns: {dataset.column_names}")
# Print sample for debugging
if len(dataset) > 0:
logger.info(f"Sample entry structure: {list(dataset[0].keys())}")
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
# Main training function
def train(config_path, dataset_name, output_dir):
# Load environment variables
load_dotenv()
# Load config
with open(config_path, 'r') as f:
config = json.load(f)
# Create training marker
create_training_marker(output_dir)
try:
# Extract configs
model_config = config.get("model_config", {})
training_config = config.get("training_config", {})
hardware_config = config.get("hardware_config", {})
lora_config = config.get("lora_config", {})
dataset_config = config.get("dataset_config", {})
# Load and prepare dataset with proper sorting
dataset = load_and_prepare_dataset(dataset_name, config)
# Load model settings
model_name = model_config.get("model_name_or_path")
logger.info(f"Using model: {model_name}")
# Initialize tokenizer
logger.info("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
# Create quantization config
quant_config = config.get("quantization_config", {})
bnb_config = BitsAndBytesConfig(
load_in_4bit=quant_config.get("load_in_4bit", True),
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"),
bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True)
)
# Create model with proper configuration
logger.info("Loading pre-quantized model")
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
use_cache=model_config.get("use_cache", False),
attn_implementation=hardware_config.get("attn_implementation", "eager")
)
# Apply rope scaling if configured
if "rope_scaling" in model_config:
logger.info(f"Applying rope scaling: {model_config['rope_scaling']}")
if hasattr(model.config, "rope_scaling"):
model.config.rope_scaling = model_config["rope_scaling"]
# Create LoRA config
logger.info("Creating LoRA configuration")
lora_config_obj = LoraConfig(
r=lora_config.get("r", 16),
lora_alpha=lora_config.get("lora_alpha", 32),
lora_dropout=lora_config.get("lora_dropout", 0.05),
bias=lora_config.get("bias", "none"),
target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
)
# Apply LoRA to model
logger.info("Applying LoRA to model")
model = get_peft_model(model, lora_config_obj)
logger.info("Successfully applied LoRA")
# Check for L40S GPU and optimize batch size
if torch.cuda.is_available():
gpu_info = torch.cuda.get_device_properties(0)
logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
# Check if it's an L40S or high-memory GPU
if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9:
logger.info("Detected L40S GPU - optimizing for high-memory GPU")
per_device_train_batch_size = training_config.get("per_device_train_batch_size", 4)
else:
# Use a smaller batch size for other GPUs
per_device_train_batch_size = 2
logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
else:
per_device_train_batch_size = 1
logger.warning("No GPU detected - using minimal batch size")
# Configure reporting backends
reports = training_config.get("report_to", ["tensorboard"])
# Create training arguments
logger.info("Creating training arguments")
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=training_config.get("num_train_epochs", 3),
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=training_config.get("gradient_accumulation_steps", 4),
learning_rate=training_config.get("learning_rate", 2e-5),
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
warmup_ratio=training_config.get("warmup_ratio", 0.03),
weight_decay=training_config.get("weight_decay", 0.01),
optim=training_config.get("optim", "adamw_torch"),
fp16=hardware_config.get("fp16", True),
bf16=hardware_config.get("bf16", False),
max_grad_norm=training_config.get("max_grad_norm", 0.3),
logging_steps=training_config.get("logging_steps", 10),
save_steps=training_config.get("save_steps", 200),
save_total_limit=training_config.get("save_total_limit", 3),
evaluation_strategy=training_config.get("evaluation_strategy", "steps"),
eval_steps=training_config.get("eval_steps", 200),
load_best_model_at_end=training_config.get("load_best_model_at_end", True),
report_to=reports,
logging_first_step=training_config.get("logging_first_step", True),
disable_tqdm=training_config.get("disable_tqdm", False),
remove_unused_columns=False,
gradient_checkpointing=hardware_config.get("gradient_checkpointing", True),
dataloader_num_workers=training_config.get("dataloader_num_workers", 4)
)
# Create trainer with pre-tokenized collator
logger.info("Creating trainer with pre-tokenized collator")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=PreTokenizedCollator(
pad_token_id=tokenizer.pad_token_id,
tokenizer=tokenizer
),
)
# Start training
logger.info("Starting training - RESEARCH PHASE ONLY")
trainer.train()
# Save the model
logger.info(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
# Save LoRA adapter separately
lora_output_dir = os.path.join(output_dir, "lora_adapter")
model.save_pretrained(lora_output_dir)
logger.info(f"Saved LoRA adapter to {lora_output_dir}")
# Save tokenizer
tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
tokenizer.save_pretrained(tokenizer_output_dir)
logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
# Save config for reference
with open(os.path.join(output_dir, "training_config.json"), "w") as f:
json.dump(config, f, indent=2)
logger.info("Training complete - RESEARCH PHASE ONLY")
return output_dir
finally:
# Always remove the training marker when done
remove_training_marker()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)")
parser.add_argument("--config", type=str, default="transformers_config.json",
help="Path to the configuration file")
parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset",
help="Dataset name or path")
parser.add_argument("--output_dir", type=str, default="fine_tuned_model",
help="Output directory for the fine-tuned model")
args = parser.parse_args()
try:
output_path = train(args.config, args.dataset, args.output_dir)
print(f"Research training completed. Model saved to: {output_path}")
except Exception as e:
logging.error(f"Training failed: {str(e)}")
remove_training_marker() # Clean up marker if training fails
raise |