File size: 43,370 Bytes
a57357b
 
 
 
 
 
 
 
 
9f8478c
a57357b
b3a8a7a
 
 
 
 
 
 
 
 
 
a57357b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb15f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a57357b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90f827
20852a7
578eea8
 
b3a8a7a
 
 
 
 
 
 
a90f827
 
adb15f9
578eea8
 
 
 
 
 
 
 
 
0364d5c
 
adb15f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0364d5c
 
 
adb15f9
0364d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb15f9
 
 
0364d5c
 
 
 
 
adb15f9
0364d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90f827
 
b3a8a7a
a90f827
 
b3a8a7a
 
a90f827
b3a8a7a
 
a90f827
b3a8a7a
a90f827
 
 
a57357b
 
b3a8a7a
 
 
 
 
 
 
 
a57357b
 
 
 
 
 
 
 
 
 
578eea8
a57357b
 
 
 
 
 
20852a7
 
 
 
 
 
 
 
a57357b
356ee13
20852a7
 
356ee13
20852a7
356ee13
 
20852a7
 
356ee13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a57357b
7e5a6ad
 
 
 
 
20852a7
7e5a6ad
356ee13
7e5a6ad
 
 
 
 
 
 
 
 
 
 
 
 
a57357b
20852a7
356ee13
a57357b
20852a7
a57357b
 
 
 
20852a7
 
 
 
 
 
 
 
356ee13
20852a7
 
 
 
356ee13
 
20852a7
 
 
 
 
 
 
356ee13
 
 
 
20852a7
 
adb15f9
20852a7
 
356ee13
20852a7
356ee13
20852a7
 
 
 
 
 
356ee13
 
 
 
 
20852a7
 
 
 
 
 
 
 
 
 
7e5a6ad
 
0364d5c
 
 
 
20852a7
 
7e5a6ad
20852a7
 
 
 
7e5a6ad
20852a7
356ee13
7e5a6ad
 
 
20852a7
 
 
7e5a6ad
 
 
 
 
 
 
 
 
adb15f9
7e5a6ad
adb15f9
7e5a6ad
 
 
 
 
 
 
 
 
 
 
 
 
20852a7
7e5a6ad
 
 
 
 
 
 
20852a7
7e5a6ad
20852a7
7e5a6ad
20852a7
7e5a6ad
 
20852a7
 
 
7e5a6ad
20852a7
 
 
 
7e5a6ad
0364d5c
7e5a6ad
 
20852a7
 
 
 
7e5a6ad
20852a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e5a6ad
0364d5c
20852a7
 
 
 
 
 
7e5a6ad
20852a7
 
 
adb15f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90f827
 
 
 
 
 
 
 
 
 
 
578eea8
a90f827
 
578eea8
a90f827
578eea8
 
a90f827
 
578eea8
a90f827
578eea8
a90f827
578eea8
a90f827
 
 
 
a57357b
 
adb15f9
a57357b
 
 
 
a90f827
 
 
 
 
a57357b
 
 
 
 
 
b3a8a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb15f9
 
 
a57357b
 
 
b3a8a7a
a57357b
 
b3a8a7a
 
 
 
 
 
 
 
adb15f9
b3a8a7a
 
 
adb15f9
b3a8a7a
 
 
 
 
 
a57357b
 
 
 
 
 
 
adb15f9
a57357b
0364d5c
 
 
 
adb15f9
 
 
 
 
 
0364d5c
adb15f9
 
 
 
 
 
 
 
 
0364d5c
a57357b
adb15f9
a57357b
adb15f9
a57357b
b3a8a7a
a57357b
adb15f9
b3a8a7a
adb15f9
a57357b
b3a8a7a
a57357b
0364d5c
a57357b
20852a7
a57357b
9f8478c
 
 
 
adb15f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8478c
a57357b
adb15f9
a57357b
9f8478c
 
adb15f9
 
9f8478c
 
 
 
 
 
 
 
 
 
 
 
 
a57357b
 
9f8478c
 
0364d5c
9f8478c
a57357b
 
adb15f9
0364d5c
adb15f9
a57357b
 
7e5a6ad
 
 
 
adb15f9
7e5a6ad
 
 
 
 
 
 
 
 
 
 
adb15f9
7e5a6ad
 
0364d5c
 
 
7e5a6ad
0364d5c
adb15f9
0364d5c
7e5a6ad
0364d5c
7e5a6ad
0364d5c
 
 
 
 
 
 
a57357b
7e5a6ad
 
a57357b
 
adb15f9
a57357b
adb15f9
 
 
 
 
 
 
 
 
0364d5c
adb15f9
a57357b
0364d5c
adb15f9
0364d5c
adb15f9
0364d5c
 
 
adb15f9
 
a57357b
adb15f9
0364d5c
 
a57357b
 
adb15f9
0364d5c
adb15f9
0364d5c
adb15f9
 
 
 
 
a57357b
0364d5c
a57357b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
#!/usr/bin/env python
# coding=utf-8

import os
import sys
import json
import argparse
import logging
from datetime import datetime
import time

# Import Unsloth first, before other ML imports
try:
    from unsloth import FastLanguageModel
    from unsloth.chat_templates import get_chat_template
    unsloth_available = True
except ImportError:
    unsloth_available = False
    logger = logging.getLogger(__name__)
    logger.warning("Unsloth not available. Please install with: pip install unsloth")

import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    TrainerCallback,
    set_seed,
    BitsAndBytesConfig
)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

# Set other loggers to WARNING to reduce noise and ensure our logs are visible
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("datasets").setLevel(logging.WARNING)
logging.getLogger("accelerate").setLevel(logging.WARNING)
logging.getLogger("torch").setLevel(logging.WARNING)
logging.getLogger("bitsandbytes").setLevel(logging.WARNING)

# Define a clean logging function for HF Space compatibility
def log_info(message):
    """Log information in a format compatible with Hugging Face Spaces"""
    # Just use the logger, but ensure consistent formatting
    logger.info(message)
    # Also ensure output is flushed immediately for streaming
    sys.stdout.flush()

# Check for BitsAndBytes
try:
    from transformers import BitsAndBytesConfig
    bitsandbytes_available = True
except ImportError:
    bitsandbytes_available = False
    logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")

# Check for PEFT
try:
    from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
    peft_available = True
except ImportError:
    peft_available = False
    logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")

def load_env_variables():
    """Load environment variables from system, .env file, or Hugging Face Space variables."""
    # Check if we're running in a Hugging Face Space
    if os.environ.get("SPACE_ID"):
        logging.info("Running in Hugging Face Space")
        
        # Log the presence of variables (without revealing values)
        logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
        logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
        
        # If username is not set, try to extract from SPACE_ID
        if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
            username = os.environ.get("SPACE_ID").split("/")[0]
            os.environ["HF_USERNAME"] = username
            logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
    else:
        # Try to load from .env file if not in a Space
        try:
            from dotenv import load_dotenv
            # Updated path to .env file in the new directory structure
            env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
            if os.path.exists(env_path):
                load_dotenv(env_path)
                logging.info(f"Loaded environment variables from {env_path}")
                logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
                logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
                logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
            else:
                logging.warning(f"No .env file found at {env_path}")
        except ImportError:
            logging.warning("python-dotenv not installed, not loading from .env file")
    
    if not os.environ.get("HF_USERNAME"):
        logger.warning("HF_USERNAME is not set. Using default username.")
    
    if not os.environ.get("HF_SPACE_NAME"):
        logger.warning("HF_SPACE_NAME is not set. Using default space name.")
        
    # Set HF_TOKEN for huggingface_hub
    if os.environ.get("HF_TOKEN"):
        os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")

def load_configs(base_path):
    """Load all configuration files."""
    configs = {}
    
    # List of config files to load
    config_files = [
        "transformers_config.json",
        "hardware_config.json",
        "dataset_config.json"
    ]
    
    for config_file in config_files:
        file_path = os.path.join(base_path, config_file)
        try:
            with open(file_path, "r") as f:
                config_name = config_file.replace("_config.json", "")
                configs[config_name] = json.load(f)
                logger.info(f"Loaded {config_name} configuration from {file_path}")
        except Exception as e:
            logger.error(f"Error loading {config_file}: {e}")
            raise
    
    return configs

def parse_args():
    parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
    parser.add_argument("--config_dir", type=str, default=".", help="Directory containing configuration files")
    return parser.parse_args()

def load_model_and_tokenizer(config):
    """Load model and tokenizer with proper error handling and optimizations."""
    try:
        if not unsloth_available:
            logger.error("Unsloth is required for training with pre-quantized model")
            logger.error("Please ensure unsloth is in requirements.txt")
            raise ImportError("Unsloth is required for this training setup")
        
        # Get model name correctly from nested config structure
        model_name = config.get("model", {}).get("name") or config.get("model_name_or_path") or config.get("model_name")
        logger.info(f"Loading model: {model_name}")
        
        if not model_name:
            raise ValueError("Model name not found in configuration. Please check your transformers_config.json file.")
            
        logger.info("Using Unsloth optimizations with pre-quantized model")
        
        # Check for flash attention without importing it directly
        use_flash_attention = config.get("use_flash_attention", True)
        try:
            import flash_attn
            logger.info("Flash attention detected and will be used")
        except ImportError:
            use_flash_attention = False
            logger.warning("Flash attention not available, falling back to standard attention")
            
        # First detect if we have a GPU
        if torch.cuda.is_available():
            gpu_count = torch.cuda.device_count()
            logger.info(f"CUDA available, found {gpu_count} GPU(s)")
            
            # Log GPU info
            for i in range(gpu_count):
                logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
                logger.info(f"Memory: {torch.cuda.get_device_properties(i).total_memory / 1024**3:.2f} GB")
            
            # Create an optimized device map for better balance
            if gpu_count > 1:
                logger.info(f"Creating balanced device map for {gpu_count} GPUs")
                # Use auto mapping but with memory tracking
                device_map = "auto"
                # Set max memory for better balancing
                max_memory = {i: f"{int(torch.cuda.get_device_properties(i).total_memory * 0.85 / 1024**3)}GiB" for i in range(gpu_count)}
                logger.info(f"Max memory settings: {max_memory}")
            else:
                device_map = "auto"
                max_memory = None
        else:
            logger.warning("No CUDA available, falling back to CPU")
            device_map = {"": "cpu"}  # Force CPU placement
            max_memory = None
        
        # Set default dtype for better numerics
        if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
            # Use bfloat16 for Ampere or newer
            dtype = torch.bfloat16
            logger.info("Using bfloat16 precision (Ampere+ GPU)")
        elif torch.cuda.is_available():
            # Use float16 for older GPUs
            dtype = torch.float16
            logger.info("Using float16 precision (pre-Ampere GPU)")
        else:
            # CPU, use default dtype
            dtype = None
            logger.info("Using default precision (CPU)")
        
        # Load model with proper error handling for out-of-memory
        try:
            # Improved memory settings for multi-GPU setup
            os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
            
            model, tokenizer = FastLanguageModel.from_pretrained(
                model_name=model_name,
                max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048),
                dtype=dtype,
                device_map=device_map,
                max_memory=max_memory,
                # Don't explicitly use flash attention config here, let Unsloth handle it
            )
        except RuntimeError as e:
            if "CUDA out of memory" in str(e):
                logger.error("Out of GPU memory. Consider using a smaller batch size or gradient accumulation steps.")
                raise
            else:
                # Try again with CPU placement to see if it's a memory issue
                logger.warning(f"Error loading model on default device: {str(e)}")
                logger.warning("Attempting to load with device_map='cpu' and no specific dtype")
                model, tokenizer = FastLanguageModel.from_pretrained(
                    model_name=model_name,
                    max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048),
                    dtype=None,
                    device_map={"": "cpu"},
                )
                logger.warning("Model loaded on CPU. Training will be very slow.")
        
        # Ensure model and optimizer init is on the same device
        logger.info(f"Model device map: {model.hf_device_map if hasattr(model, 'hf_device_map') else 'Not available'}")
        
        # Apply Unsloth's training optimizations with config parameters
        unsloth_config = config.get("unsloth", {})
        model = FastLanguageModel.get_peft_model(
            model,
            r=unsloth_config.get("r", 32),
            target_modules=unsloth_config.get("target_modules", 
                ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]),
            lora_alpha=unsloth_config.get("alpha", 16),
            lora_dropout=unsloth_config.get("dropout", 0.05),
            bias="none",
            use_gradient_checkpointing=config.get("gradient_checkpointing", True) or config.get("training", {}).get("gradient_checkpointing", True),
            random_state=config.get("seed", 42),
        )
        logger.info("Unsloth optimizations applied successfully")

        # Set up tokenizer settings
        chat_template = config.get("chat_template") or config.get("tokenizer", {}).get("chat_template")
        if chat_template:
            try:
                template = get_chat_template("phi")
                tokenizer.chat_template = template
                logger.info("Set phi chat template")
            except Exception as e:
                logger.warning(f"Failed to set chat template: {str(e)}")
        
        # Ensure proper token settings
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = tokenizer.eos_token_id
            logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
        
        return model, tokenizer
    
    except Exception as e:
        logger.error(f"Error in model/tokenizer loading: {str(e)}")
        logger.error("If missing dependencies, check the requirements.txt file")
        raise

def load_dataset_with_mapping(dataset_config):
    """Load and prepare dataset with proper column mapping."""
    try:
        # Load dataset
        dataset_name = dataset_config.get("dataset", {}).get("name", "")
        dataset_split = dataset_config.get("dataset", {}).get("split", "train")
        
        if not dataset_name:
            raise ValueError("Dataset name not provided in configuration")
        
        logger.info(f"Loading dataset {dataset_name}, split {dataset_split}")
        dataset = load_dataset(dataset_name, split=dataset_split)
        
        # Map columns if specified - with checks to avoid conflicts
        column_mapping = dataset_config.get("dataset", {}).get("column_mapping", {})
        if column_mapping:
            logger.info(f"Checking column mapping: {column_mapping}")
            
            # Only apply mappings for columns that need renaming and don't already exist
            safe_mappings = {}
            for target, source in column_mapping.items():
                if source in dataset.column_names:
                    # Skip if target already exists and is not the same as source
                    if target in dataset.column_names and target != source:
                        logger.warning(f"Cannot rename '{source}' to '{target}' - target column already exists")
                    else:
                        safe_mappings[source] = target
            
            # Apply safe renames
            if safe_mappings:
                logger.info(f"Applying safe column mapping: {safe_mappings}")
                for source, target in safe_mappings.items():
                    if source != target:  # Only rename if names are different
                        dataset = dataset.rename_column(source, target)
        
        # Verify expected columns exist
        expected_columns = {"id", "conversations"}
        for col in expected_columns:
            if col not in dataset.column_names:
                # If "conversations" is missing but "text" exists, it might need conversion
                if col == "conversations" and "text" in dataset.column_names:
                    logger.info("Converting 'text' field to 'conversations' format")
                    
                    def convert_text_to_conversations(example):
                        # Check if text is already a list of conversation turns
                        if isinstance(example.get("text"), list):
                            return {"conversations": example["text"]}
                        # Otherwise, create a simple conversation with the text as user message
                        else:
                            return {
                                "conversations": [
                                    {"role": "user", "content": str(example.get("text", ""))}
                                ]
                            }
                    
                    dataset = dataset.map(convert_text_to_conversations)
                else:
                    logger.warning(f"Expected column '{col}' not found in dataset")
        
        # Note: Explicitly NOT sorting the dataset to preserve original order
        logger.info("Preserving original dataset order (no sorting)")
        
        # Log examples without printing full content
        if "conversations" in dataset.column_names:
            sample_ids = [example['id'] for example in dataset.select(range(min(5, len(dataset))))]
            logger.info(f"First few IDs: {sample_ids}")
            
            # Log conversation structure without full content
            if len(dataset) > 0:
                sample_conv_structure = []
                for msg in dataset["conversations"][0]:
                    if isinstance(msg, dict):
                        content = msg.get('content', '')
                        preview = content[:50] + "..." if len(content) > 50 else content
                        sample_conv_structure.append({
                            "role": msg.get('role', ''),
                            "content_length": len(content),
                            "preview": preview
                        })
                logger.info(f"Conversation structure: {sample_conv_structure}")
        
        logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
        logger.info(f"Dataset columns: {dataset.column_names}")
        return dataset
        
    except Exception as e:
        logger.error(f"Error loading dataset: {str(e)}")
        raise

def format_phi_chat(messages, dataset_config):
    """Format messages according to phi-4's chat template and dataset config."""
    formatted_chat = ""
    
    # Get role templates from config
    roles = dataset_config.get("data_formatting", {}).get("roles", {
        "system": "System: {content}\n\n",
        "human": "Human: {content}\n\n",
        "user": "Human: {content}\n\n",
        "assistant": "Assistant: {content}\n\n"
    })
    
    # Handle research introduction metadata first
    metadata = next((msg for msg in messages if isinstance(msg, dict) and 
                    "[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
    if metadata:
        system_template = roles.get("system", "System: {content}\n\n")
        formatted_chat = system_template.format(content=metadata['content'])
        messages = [msg for msg in messages if msg != metadata]
    
    # Process remaining messages
    for message in messages:
        if not isinstance(message, dict) or "content" not in message:
            logger.warning(f"Skipping invalid message format: {message}")
            continue
            
        role = message.get("role", "").lower()
        content = message.get("content", "")
    
        # Format based on role
        if role == "human" or role == "user":
            template = roles.get("user", roles.get("human", "Human: {content}\n\n"))
            formatted_chat += template.format(content=content)
        elif role == "assistant" or role == "bot":
            template = roles.get("assistant", "Assistant: {content}\n\n")
            formatted_chat += template.format(content=content)
        elif role == "system":
            # For system messages, prepend them
            template = roles.get("system", "System: {content}\n\n")
            formatted_chat = template.format(content=content) + formatted_chat
        else:
            # Default to system for unknown roles
            logger.warning(f"Unknown role '{role}' - treating as system message")
            template = roles.get("system", "System: {content}\n\n")
            formatted_chat += template.format(content=content)
    
    return formatted_chat.strip()

class SimpleDataCollator:
    def __init__(self, tokenizer, dataset_config):
        self.tokenizer = tokenizer
        self.dataset_config = dataset_config
        self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
        self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
        self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
        logger.info(f"SimpleDataCollator initialized - using pre-audited dataset with max_seq_length={self.max_seq_length}")
        logger.info("Using exact dataset structure without reformatting")
        
        # Check if we're on GPU
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"SimpleDataCollator using device: {self.device}")
    
    def __call__(self, features):
        """Process examples preserving exact JSONL structure"""
        batch = {"input_ids": [], "attention_mask": [], "labels": []}
        
        for example in features:
            try:
                # Get ID
                paper_id = example.get("id", "")
                
                # Get conversations - these should already contain role and content
                conversations = example.get("conversations", [])
                if not conversations:
                    self.stats["skipped"] += 1
                    continue
                
                # Directly use the conversations array as input to the model's chat template
                # This preserves the exact structure with roles and content as they are
                try:
                    # Let tokenizer handle the content with the model's chat template
                    inputs = self.tokenizer.apply_chat_template(
                        conversations,
                        return_tensors=None,
                        add_generation_prompt=False
                    )
                except Exception as chat_error:
                    # Fallback if apply_chat_template fails
                    logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)[:100]}")
                    
                    # Create a basic representation of the conversation
                    conversation_text = ""
                    for msg in conversations:
                        if isinstance(msg, dict) and 'content' in msg:
                            conversation_text += msg.get('content', '') + "\n\n"
                    
                    # Basic tokenization
                    inputs = self.tokenizer(
                        conversation_text,
                        add_special_tokens=True,
                        return_tensors=None
                    )
                
                # Apply length cap if needed (shouldn't be necessary for pre-audited data)
                if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
                    logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
                    inputs = inputs[:self.max_seq_length]
                    
                # Create attention mask (1 for all tokens)
                attention_mask = [1] * len(inputs)
                
                if len(inputs) > 0:
                    # For causal language modeling, labels are the same as inputs
                    labels = inputs.copy()
                    
                    batch["input_ids"].append(inputs)
                    batch["attention_mask"].append(attention_mask)
                    batch["labels"].append(labels)
                    
                    self.stats["processed"] += 1
                    self.stats["total_tokens"] += len(inputs)
                    
                    # Debug logging for first few examples
                    log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
                    if self.stats["processed"] <= log_samples:
                        logger.info(f"Example {self.stats['processed']}:")
                        logger.info(f"Paper ID: {paper_id}")
                        logger.info(f"Token count: {len(inputs)}")
                        logger.info(f"Conversation entries: {len(conversations)}")
                else:
                    self.stats["skipped"] += 1
            except Exception as e:
                logger.warning(f"Error processing example: {str(e)[:100]}...")
                logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
                self.stats["skipped"] += 1
                continue
        
        if not batch["input_ids"]:
            logger.warning("Empty batch, returning dummy tensors")
            return {
                "input_ids": torch.zeros((1, 1), dtype=torch.long),
                "attention_mask": torch.zeros((1, 1), dtype=torch.long),
                "labels": torch.zeros((1, 1), dtype=torch.long)
            }
        
        # Pad the batch
        max_length = max(len(ids) for ids in batch["input_ids"])
        
        for i in range(len(batch["input_ids"])):
            padding_length = max_length - len(batch["input_ids"][i])
            if padding_length > 0:
                batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
                batch["attention_mask"][i].extend([0] * padding_length)
                batch["labels"][i].extend([-100] * padding_length)
        
        # Convert to tensors
        batch = {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()}
        
        # Log stats periodically
        log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
        if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
            logger.info(f"Data collator stats: processed={self.stats['processed']}, "
                       f"skipped={self.stats['skipped']}, "
                       f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}")
        
        return batch

class LoggingCallback(TrainerCallback):
    def __init__(self):
        self.last_log_time = time.time()
        self.last_memory_log_time = time.time()
        
    def on_step_end(self, args, state, control, **kwargs):
        # Log every 50 steps or every 5 minutes, whichever comes first
        current_time = time.time()
        
        # Log loss every 50 steps or 5 minutes
        if (state.global_step % 50 == 0) or (current_time - self.last_log_time > 300):
            if state.log_history:
                loss = state.log_history[-1].get('loss', 'N/A')
                # Use simple formatting for better HF Space log compatibility
                log_info(f"Step {state.global_step}: Loss {loss}")
            else:
                log_info(f"Step {state.global_step}: No loss data available")
            self.last_log_time = current_time
        
        # Log memory usage every 15 minutes
        if current_time - self.last_memory_log_time > 900:  # 15 minutes
            if torch.cuda.is_available():
                memory_info = []
                for i in range(torch.cuda.device_count()):
                    allocated = torch.cuda.memory_allocated(i) / 1024**2
                    reserved = torch.cuda.memory_reserved(i) / 1024**2
                    memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB")
                
                # Log in compact format for better visibility
                log_info(f"Memory usage - {', '.join(memory_info)}")
            self.last_memory_log_time = current_time
            
    def on_train_begin(self, args, state, control, **kwargs):
        log_info("=== Training is starting ===")
        
        # Log important training parameters for visibility
        log_info(f"Batch size: {args.per_device_train_batch_size} × {args.gradient_accumulation_steps} steps × {max(1, torch.cuda.device_count())} GPUs")
        log_info(f"Learning rate: {args.learning_rate}")
        log_info(f"Epochs: {args.num_train_epochs}")
        
        # Log memory information in compact format
        if torch.cuda.is_available():
            memory_info = []
            for i in range(torch.cuda.device_count()):
                allocated = torch.cuda.memory_allocated(i) / 1024**2
                max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
                memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
            
            log_info(f"Initial memory usage - {', '.join(memory_info)}")
            
    def on_train_end(self, args, state, control, **kwargs):
        log_info("=== Training completed ===")
        if torch.cuda.is_available():
            memory_info = []
            for i in range(torch.cuda.device_count()):
                allocated = torch.cuda.memory_allocated(i) / 1024**2
                max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
                memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
            
            log_info(f"Final memory usage - {', '.join(memory_info)}")
        
        log_info(f"Total steps: {state.global_step}")
        log_info(f"Final loss: {state.log_history[-1].get('loss', 'N/A') if state.log_history else 'N/A'}")

def check_dependencies():
    """Check if all required dependencies are installed."""
    missing_packages = []
    
    # Critical packages
    if not unsloth_available:
        missing_packages.append("unsloth>=2024.3")
    
    if not peft_available:
        missing_packages.append("peft>=0.9.0")
    
    # Optional packages - don't add to missing list, just log
    try:
        import flash_attn
        logger.info("flash-attn found. Flash attention will be used for faster training.")
    except ImportError:
        logger.warning("flash-attn not found. Training will work but may be slower.")
        # Don't add to missing packages since it's optional and can cause build issues
    
    # If critical packages are missing, exit with instructions
    if missing_packages:
        logger.error("Critical dependencies missing:")
        for pkg in missing_packages:
            logger.error(f"  - {pkg}")
        logger.error("Please ensure the space has these packages in requirements.txt")
        return False
    
    return True

def main():
    # Set up logging
    log_info("Starting Phi-4 fine-tuning process")
    
    # Parse arguments
    args = parse_args()
    
    # Check dependencies
    if not check_dependencies():
        logger.error("Aborting due to missing critical dependencies")
        return 1
    
    # Load environment variables
    load_env_variables()
    
    # Load all configurations
    try:
        configs = load_configs(args.config_dir)
        
        # Extract specific configs
        if not configs:
            logger.error("Failed to load configurations")
            return 1
            
        # Verify configurations exist
        if "transformers" not in configs:
            logger.error("transformers_config.json not found or invalid")
            return 1
            
        if "hardware" not in configs:
            logger.warning("hardware_config.json not found. Using default hardware configuration.")
            
        if "dataset" not in configs:
            logger.error("dataset_config.json not found or invalid")
            return 1
            
        # Validate model configuration
        model_config = configs["transformers"]
        if not model_config.get("model", {}).get("name") and not model_config.get("model_name_or_path") and not model_config.get("model_name"):
            logger.error("Model name not specified in configuration")
            logger.error("Please ensure 'name' is specified under 'model' in transformers_config.json")
            return 1
            
        model_name = model_config.get("model", {}).get("name") or model_config.get("model_name_or_path") or model_config.get("model_name")
        log_info(f"Using model: {model_name}")
        log_info("All configurations loaded successfully")
        
        # Extract specific configs
        model_config = configs["transformers"]
        hardware_config = configs.get("hardware", {})
        dataset_config = configs["dataset"]
        
        # Apply hardware-specific settings if available
        if hardware_config:
            training_opts = hardware_config.get("training_optimizations", {})
            per_device_batch_size = training_opts.get("per_device_batch_size")
            gradient_accumulation = training_opts.get("gradient_accumulation_steps")
            
            if per_device_batch_size and model_config.get("training"):
                model_config["training"]["per_device_train_batch_size"] = per_device_batch_size
                log_info(f"Applied hardware-specific batch size: {per_device_batch_size}")
                
            if gradient_accumulation and model_config.get("training"):
                model_config["training"]["gradient_accumulation_steps"] = gradient_accumulation
                log_info(f"Applied hardware-specific gradient accumulation: {gradient_accumulation}")
                
            # Apply memory optimizations
            memory_opts = training_opts.get("memory_optimizations", {})
            if memory_opts.get("use_gradient_checkpointing") is not None and model_config.get("training"):
                model_config["training"]["gradient_checkpointing"] = memory_opts["use_gradient_checkpointing"]
                
    except Exception as e:
        logger.error(f"Error loading configurations: {e}")
        return 1
    
    # Set random seed for reproducibility
    seed = model_config.get("seed", 42)
    set_seed(seed)
    log_info(f"Set random seed to {seed} for reproducibility")
    
    # Check CUDA and set environment variables for better memory management
    if torch.cuda.is_available():
        # Empty CUDA cache
        torch.cuda.empty_cache()
        
        # Set memory management env vars for better fragmentation handling
        os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,expandable_segments:True"
        
        # Log initial memory information in a compact form
        gpu_info = []
        for i in range(torch.cuda.device_count()):
            name = torch.cuda.get_device_name(i)
            allocated = torch.cuda.memory_allocated(i) / 1024**3
            total = torch.cuda.get_device_properties(i).total_memory / 1024**3
            gpu_info.append(f"GPU {i}: {name} ({allocated:.1f}GB/{total:.1f}GB)")
        
        log_info(f"Hardware: {torch.cuda.device_count()} GPUs detected")
        log_info(f"GPU details: {', '.join(gpu_info)}")
    else:
        log_info("No GPU detected, using CPU (training will be very slow)")
    
    try:
        log_info("Loading model and tokenizer...")
        model, tokenizer = load_model_and_tokenizer(model_config)
        log_info("Model and tokenizer loaded successfully")
        
        # Load dataset with proper mapping
        try:
            log_info(f"Loading dataset from {dataset_config.get('dataset', {}).get('name', '')}")
            dataset = load_dataset_with_mapping(dataset_config)
            log_info(f"Dataset loaded with {len(dataset)} examples")
        except Exception as e:
            logger.error(f"Error loading dataset: {e}")
            return 1
            
        # Create data collator
        data_collator = SimpleDataCollator(tokenizer, dataset_config)
        
        # Verify precision settings - ensure only one of bf16/fp16 is set, with bf16 taking precedence
        use_bf16 = model_config.get("bf16", False) or model_config.get("torch_dtype", "") == "bfloat16"
        use_fp16 = model_config.get("fp16", False) and not use_bf16  # Only use fp16 if bf16 is not set
        
        log_info(f"Using precision: {'bf16' if use_bf16 else 'fp16' if use_fp16 else 'full precision'}")
        
        # Get per device batch size - temporarily reduce if necessary for multi-GPU setup
        per_device_batch_size = model_config.get("training", {}).get("per_device_train_batch_size", 24)
        gradient_accumulation_steps = model_config.get("training", {}).get("gradient_accumulation_steps", 2)
        
        # For multi-GPU setup, adjust for better balance
        if torch.cuda.device_count() > 1:
            log_info(f"Multi-GPU setup with {torch.cuda.device_count()} GPUs")
            log_info(f"Training config: {per_device_batch_size} samples/GPU × {gradient_accumulation_steps} accumulation steps")
        
        # Set up FSDP for multi-GPU training if available
        fsdp_config = None
        if torch.cuda.device_count() > 1:
            try:
                from torch.distributed.fsdp import (
                    FullyShardedDataParallel as FSDP,
                    MixedPrecision,
                    BackwardPrefetch,
                    ShardingStrategy,
                    CPUOffload,
                )
                from torch.distributed.fsdp.wrap import (
                    transformer_auto_wrap_policy,
                    enable_wrap,
                    wrap,
                )
                
                log_info("Using FSDP for distributed training")
                
                # Configure FSDP
                fsdp_config = {
                    "fsdp_transformer_layer_cls_to_wrap": ["LlamaDecoderLayer"],
                    "fsdp_offload_params": False,
                    "fsdp_backward_prefetch": "BACKWARD_PRE",
                    "fsdp_min_num_params": 1e6,
                    "fsdp_sharding_strategy": 1,  # FULL_SHARD
                }
                
                if use_bf16 or use_fp16:
                    precision_type = "bf16" if use_bf16 else "fp16"
                    fsdp_config["fsdp_state_dict_type"] = "FULL_STATE_DICT"
                    log_info(f"FSDP using mixed precision: {precision_type}")
            except ImportError:
                log_info("FSDP imports failed, falling back to standard DDP")
                fsdp_config = None
        
        # Set up training arguments
        log_info("Setting up training arguments")
        training_args = TrainingArguments(
            output_dir=model_config.get("output_dir", "./results") or model_config.get("checkpointing", {}).get("output_dir", "./results"),
            num_train_epochs=model_config.get("training", {}).get("num_train_epochs", 3),
            per_device_train_batch_size=per_device_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            learning_rate=model_config.get("training", {}).get("learning_rate", 2e-5),
            weight_decay=model_config.get("training", {}).get("weight_decay", 0.01),
            warmup_ratio=model_config.get("training", {}).get("warmup_ratio", 0.05),
            lr_scheduler_type=model_config.get("training", {}).get("lr_scheduler_type", "cosine"),
            logging_steps=model_config.get("training", {}).get("logging_steps", 10),
            save_strategy=model_config.get("checkpointing", {}).get("save_strategy", "steps"),
            save_steps=model_config.get("checkpointing", {}).get("save_steps", 100),
            save_total_limit=model_config.get("checkpointing", {}).get("save_total_limit", 3),
            fp16=use_fp16,
            bf16=use_bf16,
            max_grad_norm=model_config.get("training", {}).get("max_grad_norm", 1.0),
            push_to_hub=model_config.get("huggingface_hub", {}).get("push_to_hub", False),
            hub_model_id=model_config.get("huggingface_hub", {}).get("hub_model_id", None),
            hub_token=os.environ.get("HF_TOKEN", None),
            report_to="tensorboard",
            remove_unused_columns=False,  # Keep all columns
            gradient_checkpointing=model_config.get("training", {}).get("gradient_checkpointing", True),
            dataloader_pin_memory=True,  # Keep data in pinned memory for faster transfer
            optim=model_config.get("training", {}).get("optim", "adamw_torch"),
            ddp_find_unused_parameters=False,  # Improve distributed training efficiency
            dataloader_drop_last=False,  # Process all examples
            dataloader_num_workers=2,  # Reduced worker count
            no_cuda=False if torch.cuda.is_available() else True,  # Use CUDA if available
            fsdp=fsdp_config,  # Add FSDP configuration if available
        )
        
        # Create sequential sampler to maintain original dataset order
        sequential_sampler = torch.utils.data.SequentialSampler(dataset)
        
        # Initialize trainer first
        log_info("Initializing Trainer")
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=dataset,  # We'll override this with our custom dataloader
            data_collator=data_collator,
            callbacks=[LoggingCallback()],
        )
        
        # Then override the get_train_dataloader method
        def custom_get_train_dataloader():
            """Custom dataloader that preserves original dataset order"""
            log_info("Creating sequential dataloader to maintain original dataset order")
            
            # Calculate batch size based on device availability
            if getattr(training_args, "no_cuda", False):
                batch_size = training_args.per_device_train_batch_size
            else:
                batch_size = max(training_args.per_device_train_batch_size * max(1, torch.cuda.device_count()), 1)
                
            log_info(f"Using sequential sampler with batch size {batch_size}")
            
            # Return DataLoader with sequential sampler
            return torch.utils.data.DataLoader(
                dataset,
                batch_size=batch_size,
                sampler=sequential_sampler,
                collate_fn=data_collator,
                drop_last=training_args.dataloader_drop_last,
                num_workers=training_args.dataloader_num_workers,
                pin_memory=training_args.dataloader_pin_memory,
            )
        
        # Override the get_train_dataloader method
        trainer.get_train_dataloader = custom_get_train_dataloader
        
        # Start training
        log_info("=== Starting Training ===")
        try:
            # Empty cache again right before training
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                log_info("Cleared CUDA cache before training")
            
            # Display compact training info
            total_steps = int(len(dataset) / (per_device_batch_size * torch.cuda.device_count() * gradient_accumulation_steps) * training_args.num_train_epochs)
            log_info(f"Training plan: {len(dataset)} examples over {training_args.num_train_epochs} epochs ≈ {total_steps} steps")
            
            trainer.train()
            log_info("Training completed successfully!")
            
            # Save the final model
            log_info("Saving final model...")
            trainer.save_model()
            log_info(f"Model saved to {training_args.output_dir}")
            
            # Push to hub if enabled
            if model_config.get("huggingface_hub", {}).get("push_to_hub", False):
                hub_id = model_config.get("huggingface_hub", {}).get("hub_model_id", "model")
                log_info(f"Pushing model to Hugging Face Hub as {hub_id}...")
                trainer.push_to_hub()
                log_info("Model successfully pushed to Hub")
                
            return 0
        except Exception as e:
            logger.error(f"Training failed with error: {str(e)}")
            # Log CUDA memory info if available in compact format
            if torch.cuda.is_available():
                memory_info = []
                for i in range(torch.cuda.device_count()):
                    allocated = torch.cuda.memory_allocated(i) / 1024**2
                    reserved = torch.cuda.memory_reserved(i) / 1024**2
                    max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
                    memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB (max: {max_mem:.1f}MB)")
                logger.error(f"GPU memory at failure: {', '.join(memory_info)}")
            raise
        
    except Exception as e:
        logger.error(f"Error in main training loop: {str(e)}")
        return 1

if __name__ == "__main__":
    sys.exit(main())