Spaces:
Sleeping
Sleeping
File size: 42,621 Bytes
a57357b 9f8478c ae57ea2 a57357b b3a8a7a a57357b adb15f9 ae57ea2 adb15f9 a57357b 5b6d8f0 4a1fd53 5b6d8f0 a57357b 4a1fd53 5b6d8f0 4a1fd53 5b6d8f0 4a1fd53 a57357b 5b6d8f0 a57357b a90f827 20852a7 578eea8 b3a8a7a 5b6d8f0 b3a8a7a a90f827 adb15f9 0364d5c adb15f9 71642d9 0364d5c 71642d9 0364d5c 71642d9 0364d5c adb15f9 0364d5c adb15f9 0364d5c 4a1fd53 a90f827 b3a8a7a a90f827 b3a8a7a a90f827 b3a8a7a a90f827 b3a8a7a a90f827 a57357b b3a8a7a a57357b 578eea8 a57357b 1cf4e07 a57357b 20852a7 5a7635c 20852a7 a57357b 5a7635c 20852a7 71642d9 5a7635c 356ee13 5a7635c 1cf4e07 5a7635c 1cf4e07 5a7635c a57357b 20852a7 356ee13 5b6d8f0 5a7635c 5b6d8f0 a57357b 5a7635c a57357b 20852a7 356ee13 20852a7 356ee13 20852a7 356ee13 20852a7 adb15f9 20852a7 356ee13 20852a7 356ee13 20852a7 356ee13 20852a7 7e5a6ad 0364d5c 20852a7 7e5a6ad 20852a7 7e5a6ad 20852a7 356ee13 7e5a6ad 20852a7 7e5a6ad adb15f9 7e5a6ad adb15f9 7e5a6ad 20852a7 7e5a6ad 20852a7 7e5a6ad 20852a7 7e5a6ad 20852a7 7e5a6ad 20852a7 7e5a6ad 20852a7 7e5a6ad 0364d5c 7e5a6ad 20852a7 7e5a6ad 20852a7 7e5a6ad 0364d5c 20852a7 7e5a6ad 20852a7 adb15f9 ae57ea2 adb15f9 ae57ea2 adb15f9 5a7635c 71642d9 5a7635c 71642d9 5a7635c 71642d9 adb15f9 71642d9 adb15f9 5a7635c ae57ea2 adb15f9 ae57ea2 adb15f9 ae57ea2 adb15f9 a90f827 578eea8 a90f827 578eea8 a90f827 578eea8 a90f827 71642d9 a90f827 a57357b 5b6d8f0 ae57ea2 a57357b 5b6d8f0 a90f827 4a1fd53 5b6d8f0 4a1fd53 a57357b ae57ea2 a57357b 5b6d8f0 a57357b ae57ea2 0364d5c ae57ea2 adb15f9 ae57ea2 0364d5c a57357b 5b6d8f0 a57357b 5b6d8f0 a57357b 4a1fd53 a57357b 20852a7 a57357b 9f8478c 4a1fd53 ae57ea2 4a1fd53 adb15f9 4a1fd53 ae57ea2 adb15f9 a7d1f2a adb15f9 ae57ea2 4a1fd53 adb15f9 ae57ea2 adb15f9 4a1fd53 9f8478c a57357b adb15f9 a57357b ae57ea2 adb15f9 ae57ea2 9f8478c ae57ea2 a57357b 9f8478c ae57ea2 4a1fd53 ae57ea2 a57357b 4a1fd53 ae57ea2 4a1fd53 a57357b 7e5a6ad adb15f9 7e5a6ad adb15f9 7e5a6ad a7d1f2a ae57ea2 a7d1f2a ae57ea2 a7d1f2a 5a7635c 71642d9 5a7635c ae57ea2 7e5a6ad 0364d5c ae57ea2 0364d5c adb15f9 0364d5c 7e5a6ad 0364d5c 7e5a6ad 0364d5c 5a7635c 0364d5c a57357b 7e5a6ad a57357b adb15f9 a57357b adb15f9 ae57ea2 adb15f9 ae57ea2 adb15f9 0364d5c adb15f9 a57357b 0364d5c adb15f9 0364d5c adb15f9 0364d5c ae57ea2 adb15f9 a57357b adb15f9 0364d5c a57357b adb15f9 ae57ea2 adb15f9 ae57ea2 adb15f9 a57357b 4a1fd53 a57357b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
#!/usr/bin/env python
# coding=utf-8
import os
import sys
import json
import argparse
import logging
from datetime import datetime
import time
import warnings
import torch
from importlib.util import find_spec
# Global variables for hardware detection
CUDA_AVAILABLE = torch.cuda.is_available()
NUM_GPUS = torch.cuda.device_count() if CUDA_AVAILABLE else 0
DEVICE_TYPE = "cuda" if CUDA_AVAILABLE else "cpu"
# Import Unsloth first, before other ML imports
try:
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
unsloth_available = True
except ImportError:
unsloth_available = False
logger = logging.getLogger(__name__)
logger.warning("Unsloth not available. Please install with: pip install unsloth")
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
TrainerCallback,
set_seed,
BitsAndBytesConfig
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Set other loggers to WARNING to reduce noise and ensure our logs are visible
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("datasets").setLevel(logging.WARNING)
logging.getLogger("accelerate").setLevel(logging.WARNING)
logging.getLogger("torch").setLevel(logging.WARNING)
logging.getLogger("bitsandbytes").setLevel(logging.WARNING)
# Check availability of libraries
peft_available = find_spec("peft") is not None
# Define a clean logging function for HF Space compatibility
def log_info(message):
"""Log information in a format compatible with Hugging Face Spaces"""
# Just use the logger, but ensure consistent formatting
logger.info(message)
# Also ensure output is flushed immediately for streaming
sys.stdout.flush()
# Check for BitsAndBytes
try:
from transformers import BitsAndBytesConfig
bitsandbytes_available = True
except ImportError:
bitsandbytes_available = False
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")
# Check for PEFT
try:
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
peft_available = True
except ImportError:
peft_available = False
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")
def load_env_variables():
"""Load environment variables from system, .env file, or Hugging Face Space variables."""
# Check if we're running in a Hugging Face Space
if os.environ.get("SPACE_ID"):
logging.info("Running in Hugging Face Space")
# Log the presence of variables (without revealing values)
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
# If username is not set, try to extract from SPACE_ID
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
username = os.environ.get("SPACE_ID").split("/")[0]
os.environ["HF_USERNAME"] = username
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
else:
# Try to load from .env file if not in a Space
try:
from dotenv import load_dotenv
# Updated path to .env file in the new directory structure
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
if os.path.exists(env_path):
load_dotenv(env_path)
logging.info(f"Loaded environment variables from {env_path}")
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
else:
logging.warning(f"No .env file found at {env_path}")
except ImportError:
logging.warning("python-dotenv not installed, not loading from .env file")
if not os.environ.get("HF_USERNAME"):
logger.warning("HF_USERNAME is not set. Using default username.")
if not os.environ.get("HF_SPACE_NAME"):
logger.warning("HF_SPACE_NAME is not set. Using default space name.")
# Set HF_TOKEN for huggingface_hub
if os.environ.get("HF_TOKEN"):
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")
def load_configs(base_path):
"""Load configuration from transformers_config.json file."""
# Using a single consolidated config file
config_file = base_path
try:
with open(config_file, "r") as f:
config = json.load(f)
logger.info(f"Loaded configuration from {config_file}")
return config
except Exception as e:
logger.error(f"Error loading {config_file}: {e}")
raise
def parse_args():
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
parser.add_argument("--config", type=str, default="transformers_config.json", help="Path to configuration file")
return parser.parse_args()
def load_model_and_tokenizer(config):
"""Load model and tokenizer with proper error handling and optimizations."""
try:
if not unsloth_available:
logger.error("Unsloth is required for training with pre-quantized model")
logger.error("Please ensure unsloth is in requirements.txt")
raise ImportError("Unsloth is required for this training setup")
# Get model name correctly from config
model_name = config.get("model_name") or config.get("model", {}).get("name")
logger.info(f"Loading model: {model_name}")
if not model_name:
raise ValueError("Model name not found in configuration. Please check your transformers_config.json file.")
logger.info("Using Unsloth optimizations with pre-quantized model")
# First detect if we have a GPU
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
logger.info(f"Found {gpu_count} CUDA devices")
else:
logger.warning("No CUDA devices detected. Training will be slow on CPU!")
gpu_count = 0
# Set default dtype for better numerics
if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
# Use bfloat16 for Ampere or newer
dtype = torch.bfloat16
logger.info("Using bfloat16 precision (Ampere+ GPU)")
elif torch.cuda.is_available():
# Use float16 for older GPUs
dtype = torch.float16
logger.info("Using float16 precision (pre-Ampere GPU)")
else:
# CPU, use default dtype
dtype = None
logger.info("Using default precision (CPU)")
# Check for flash attention as the last dependency check
use_flash_attention = config.get("use_flash_attention", True)
if use_flash_attention and not find_spec("flash_attn"):
logger.warning("flash-attn not found. Will continue without flash attention.")
logger.warning("To use flash attention, install with: pip install flash-attn --no-build-isolation")
use_flash_attention = False
# Load model with proper error handling for out-of-memory
try:
# Improved memory settings for multi-GPU setup
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048),
dtype=dtype,
device_map=device_map,
max_memory=max_memory,
# Don't explicitly use flash attention config here, let Unsloth handle it
)
except RuntimeError as e:
if "CUDA out of memory" in str(e):
logger.error("Out of GPU memory. Consider using a smaller batch size or gradient accumulation steps.")
raise
else:
# Try again with CPU placement to see if it's a memory issue
logger.warning(f"Error loading model on default device: {str(e)}")
logger.warning("Attempting to load with device_map='cpu' and no specific dtype")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048),
dtype=None,
device_map={"": "cpu"},
)
logger.warning("Model loaded on CPU. Training will be very slow.")
# Ensure model and optimizer init is on the same device
logger.info(f"Model device map: {model.hf_device_map if hasattr(model, 'hf_device_map') else 'Not available'}")
# Apply Unsloth's training optimizations with config parameters
unsloth_config = config.get("unsloth", {})
model = FastLanguageModel.get_peft_model(
model,
r=unsloth_config.get("r", 32),
target_modules=unsloth_config.get("target_modules",
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]),
lora_alpha=unsloth_config.get("alpha", 16),
lora_dropout=unsloth_config.get("dropout", 0.05),
bias="none",
use_gradient_checkpointing=config.get("gradient_checkpointing", True) or config.get("training", {}).get("gradient_checkpointing", True),
random_state=config.get("seed", 42),
)
logger.info("Unsloth optimizations applied successfully")
# Set up tokenizer settings
chat_template = config.get("chat_template") or config.get("tokenizer", {}).get("chat_template")
if chat_template:
try:
template = get_chat_template("phi")
tokenizer.chat_template = template
logger.info("Set phi chat template")
except Exception as e:
logger.warning(f"Failed to set chat template: {str(e)}")
# Ensure proper token settings
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
return model, tokenizer
except Exception as e:
logger.error(f"Error in model/tokenizer loading: {str(e)}")
logger.error("If missing dependencies, check the requirements.txt file")
raise
def load_dataset_with_mapping(dataset_config):
"""Load dataset and apply appropriate column mappings."""
try:
# Load dataset
dataset_name = dataset_config.get("dataset", {}).get("name", "")
dataset_split = dataset_config.get("dataset", {}).get("split", "train")
if not dataset_name:
raise ValueError("Dataset name not provided in configuration")
logger.info(f"Loading pre-processed dataset {dataset_name}, split {dataset_split}")
dataset = load_dataset(dataset_name, split=dataset_split)
# Apply minimal processing since the dataset has already been properly structured
# Just perform validation to ensure required fields exist
# Check for required fields
required_fields = ["prompt_number", "article_id", "conversations"]
missing_fields = [field for field in required_fields if field not in dataset.column_names]
if missing_fields:
logger.warning(f"Dataset is missing required fields: {missing_fields}")
logger.warning("This may cause issues with sequence integrity and metadata management")
else:
logger.info(f"Dataset has all required fields: {required_fields}")
# Verify that column order matches our expectation
expected_order = ["prompt_number", "article_id", "conversations"]
actual_order = dataset.column_names
if actual_order == expected_order:
logger.info("Dataset column order matches expected order (prompt_number, article_id, conversations)")
else:
logger.warning(f"Dataset column order ({', '.join(actual_order)}) differs from expected order ({', '.join(expected_order)})")
logger.warning("This should not affect processing but is noted for debugging purposes")
# Log a few samples for verification
if len(dataset) > 0:
sample_indices = range(min(5, len(dataset)))
sample_records = []
for i in sample_indices:
record = {}
record["prompt_number"] = dataset[i].get("prompt_number", "N/A")
record["article_id"] = dataset[i].get("article_id", "N/A")
if "conversations" in dataset[i]:
record["conversations_length"] = len(dataset[i]["conversations"])
sample_records.append(record)
logger.info(f"Sample records: {sample_records}")
# Verify sequential integrity
if "prompt_number" in dataset.column_names and len(dataset) > 1:
first_prompt_numbers = [dataset[i]["prompt_number"] for i in range(min(10, len(dataset)))]
is_sequential = all(first_prompt_numbers[i] == i + 1 for i in range(len(first_prompt_numbers)))
if is_sequential:
logger.info("Dataset prompt numbers are sequential (1-indexed) - sequence integrity preserved")
else:
logger.warning("Dataset prompt numbers are not sequential - sequence integrity may be compromised")
logger.info(f"First few prompt numbers: {first_prompt_numbers}")
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
logger.info(f"Dataset columns: {dataset.column_names}")
# Data loading configuration - ensure shuffle is disabled
data_loading_config = dataset_config.get("data_loading", {})
if data_loading_config.get("shuffle", False):
logger.error("CRITICAL: shuffle is enabled in the dataset config!")
logger.error("This will RANDOMIZE your dataset and break sequential order.")
logger.error("Setting shuffle to False to preserve order")
data_loading_config["shuffle"] = False
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
def format_phi_chat(messages, dataset_config):
"""Format messages according to phi-4's chat template and dataset config."""
formatted_chat = ""
# Get role templates from config
roles = dataset_config.get("data_formatting", {}).get("roles", {
"system": "System: {content}\n\n",
"human": "Human: {content}\n\n",
"user": "Human: {content}\n\n",
"assistant": "Assistant: {content}\n\n"
})
# Handle research introduction metadata first
metadata = next((msg for msg in messages if isinstance(msg, dict) and
"[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
if metadata:
system_template = roles.get("system", "System: {content}\n\n")
formatted_chat = system_template.format(content=metadata['content'])
messages = [msg for msg in messages if msg != metadata]
# Process remaining messages
for message in messages:
if not isinstance(message, dict) or "content" not in message:
logger.warning(f"Skipping invalid message format: {message}")
continue
role = message.get("role", "").lower()
content = message.get("content", "")
# Format based on role
if role == "human" or role == "user":
template = roles.get("user", roles.get("human", "Human: {content}\n\n"))
formatted_chat += template.format(content=content)
elif role == "assistant" or role == "bot":
template = roles.get("assistant", "Assistant: {content}\n\n")
formatted_chat += template.format(content=content)
elif role == "system":
# For system messages, prepend them
template = roles.get("system", "System: {content}\n\n")
formatted_chat = template.format(content=content) + formatted_chat
else:
# Default to system for unknown roles
logger.warning(f"Unknown role '{role}' - treating as system message")
template = roles.get("system", "System: {content}\n\n")
formatted_chat += template.format(content=content)
return formatted_chat.strip()
class SimpleDataCollator:
def __init__(self, tokenizer, dataset_config):
self.tokenizer = tokenizer
self.dataset_config = dataset_config
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
logger.info(f"SimpleDataCollator initialized - using pre-audited dataset with max_seq_length={self.max_seq_length}")
logger.info("Using exact dataset structure without reformatting")
# Check if we're on GPU
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"SimpleDataCollator using device: {self.device}")
def __call__(self, features):
"""Process examples preserving exact JSONL structure"""
batch = {"input_ids": [], "attention_mask": [], "labels": []}
for example in features:
try:
# Get ID
paper_id = example.get("id", "")
# Get conversations - these should already contain role and content
conversations = example.get("conversations", [])
if not conversations:
self.stats["skipped"] += 1
continue
# Directly use the conversations array as input to the model's chat template
# This preserves the exact structure with roles and content as they are
try:
# Let tokenizer handle the content with the model's chat template
inputs = self.tokenizer.apply_chat_template(
conversations,
return_tensors=None,
add_generation_prompt=False
)
except Exception as chat_error:
# Fallback if apply_chat_template fails
logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)[:100]}")
# Create a basic representation of the conversation
conversation_text = ""
for msg in conversations:
if isinstance(msg, dict) and 'content' in msg:
conversation_text += msg.get('content', '') + "\n\n"
# Basic tokenization
inputs = self.tokenizer(
conversation_text,
add_special_tokens=True,
return_tensors=None
)
# Apply length cap if needed (shouldn't be necessary for pre-audited data)
if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
inputs = inputs[:self.max_seq_length]
# Create attention mask (1 for all tokens)
attention_mask = [1] * len(inputs)
if len(inputs) > 0:
# For causal language modeling, labels are the same as inputs
labels = inputs.copy()
batch["input_ids"].append(inputs)
batch["attention_mask"].append(attention_mask)
batch["labels"].append(labels)
self.stats["processed"] += 1
self.stats["total_tokens"] += len(inputs)
# Debug logging for first few examples
log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
if self.stats["processed"] <= log_samples:
logger.info(f"Example {self.stats['processed']}:")
logger.info(f"Paper ID: {paper_id}")
logger.info(f"Token count: {len(inputs)}")
logger.info(f"Conversation entries: {len(conversations)}")
else:
self.stats["skipped"] += 1
except Exception as e:
logger.warning(f"Error processing example: {str(e)[:100]}...")
logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
self.stats["skipped"] += 1
continue
if not batch["input_ids"]:
logger.warning("Empty batch, returning dummy tensors")
return {
"input_ids": torch.zeros((1, 1), dtype=torch.long),
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
"labels": torch.zeros((1, 1), dtype=torch.long)
}
# Pad the batch
max_length = max(len(ids) for ids in batch["input_ids"])
for i in range(len(batch["input_ids"])):
padding_length = max_length - len(batch["input_ids"][i])
if padding_length > 0:
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
batch["attention_mask"][i].extend([0] * padding_length)
batch["labels"][i].extend([-100] * padding_length)
# Convert to tensors
batch = {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()}
# Log stats periodically
log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
f"skipped={self.stats['skipped']}, "
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}")
return batch
class LoggingCallback(TrainerCallback):
def __init__(self):
super().__init__()
self.training_started = time.time()
self.last_log_time = time.time()
self.last_step = 0
self.verify_sequence = None
self.sequence_samples = None
self.sample_indices = None
def on_train_begin(self, args, state, control, **kwargs):
log_info(f"=== Training started at {time.strftime('%Y-%m-%d %H:%M:%S')} ===")
log_info(f"Model parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
# Disable sequence verification
self.verify_sequence = False
log_info("=== Training is starting ===")
# Log important training parameters for visibility
total_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps * NUM_GPUS
total_steps = int(len(dataset) / (args.per_device_train_batch_size * NUM_GPUS * args.gradient_accumulation_steps) * args.num_train_epochs)
log_info(f"Training plan: {len(dataset)} examples over {args.num_train_epochs} epochs ≈ {total_steps} steps")
log_info(f"Batch size: {args.per_device_train_batch_size} × {args.gradient_accumulation_steps} steps × {NUM_GPUS} GPUs = {total_batch_size} total")
log_info(f"Learning rate: {args.learning_rate}")
log_info(f"Epochs: {args.num_train_epochs}")
# Log memory information in compact format
if CUDA_AVAILABLE:
memory_info = []
for i in range(NUM_GPUS):
allocated = torch.cuda.memory_allocated(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
log_info(f"Initial memory usage - {', '.join(memory_info)}")
def on_step_end(self, args, state, control, **kwargs):
# Log every 50 steps or every 5 minutes, whichever comes first
current_time = time.time()
# Sequence verification removed
# Log progress at regular intervals
if (state.global_step % 50 == 0) or (current_time - self.last_log_time > 300):
if state.log_history:
loss = state.log_history[-1].get('loss', 'N/A')
# Use simple formatting for better Space log compatibility
log_info(f"Step {state.global_step}: Loss {loss}")
else:
log_info(f"Step {state.global_step}: No loss data available")
self.last_log_time = current_time
def on_train_end(self, args, state, control, **kwargs):
training_time = time.strftime("%H:%M:%S", time.gmtime(time.time() - self.training_started))
log_info(f"=== Training completed in {training_time} ===")
# Log final memory usage
if CUDA_AVAILABLE:
for i in range(NUM_GPUS):
max_mem = torch.cuda.max_memory_allocated(i) / 1024**3 # GB
log_info(f"GPU {i} max memory: {max_mem:.2f} GB")
# Clear GPU memory
torch.cuda.empty_cache()
log_info("GPU memory cleared")
log_info(f"Total steps: {state.global_step}")
log_info(f"Final loss: {state.log_history[-1].get('loss', 'N/A') if state.log_history else 'N/A'}")
def check_dependencies():
"""Check if all required dependencies are installed."""
missing_packages = []
# Critical packages
if not unsloth_available:
missing_packages.append("unsloth>=2024.3")
if not peft_available:
missing_packages.append("peft>=0.9.0")
# If critical packages are missing, exit with instructions
if missing_packages:
logger.error("Critical dependencies missing:")
for pkg in missing_packages:
logger.error(f" - {pkg}")
logger.error("Please ensure the space has these packages in requirements.txt")
return False
# Optional packages - moved to the end
if find_spec("flash_attn"):
logger.info("flash-attn found. Flash attention will be used for faster training.")
else:
logger.warning("flash-attn not found. Training will work but may be slower.")
logger.warning("To use flash attention, install with: pip install flash-attn --no-build-isolation")
return True
def main():
# Set up logging
logger.info("Starting training process")
# Parse arguments
args = parse_args()
# Load environment variables
load_env_variables()
# Load configuration
try:
transformers_config = load_configs(args.config)
hardware_config = transformers_config.get("hardware", {})
dataset_config = transformers_config.get("dataset", {})
logger.info("Configuration loaded successfully")
except Exception as e:
logger.error(f"Error loading configuration: {e}")
return 1
# Check dependencies
if not check_dependencies():
logger.error("Aborting due to missing critical dependencies")
return 1
# Check if we're in distributed mode
is_distributed = "WORLD_SIZE" in os.environ and int(os.environ.get("WORLD_SIZE", "1")) > 1
if is_distributed:
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
log_info(f"Running in distributed mode with {os.environ.get('WORLD_SIZE')} processes, local_rank: {local_rank}")
else:
log_info("Running in non-distributed mode (single process)")
# Set random seed for reproducibility
seed = transformers_config.get("seed", 42)
set_seed(seed)
logger.info(f"Set random seed to {seed}")
# Load model and tokenizer using the consolidated config
model, tokenizer = load_model_and_tokenizer(transformers_config)
# Empty CUDA cache to ensure clean state
if CUDA_AVAILABLE:
torch.cuda.empty_cache()
log_info("Cleared CUDA cache")
# Setup environment variable for CUDA memory allocation
if CUDA_AVAILABLE:
system_settings = hardware_config.get("system_settings", {})
cuda_memory_fraction = system_settings.get("cuda_memory_fraction", 0.85)
if cuda_memory_fraction < 1.0:
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = f"max_split_size_mb:128,expandable_segments:True"
log_info(f"Set CUDA memory allocation limit to expandable with max_split_size_mb:128")
try:
log_info("Loading dataset...")
dataset = load_dataset_with_mapping(dataset_config)
log_info(f"Dataset loaded with {len(dataset)} examples")
# Minimal validation before proceeding
if dataset is None or len(dataset) == 0:
logger.error("Dataset is empty or None! Cannot proceed with training.")
return 1
# Create data collator
data_collator = SimpleDataCollator(tokenizer, dataset_config)
# Verify precision settings - ensure only one of bf16/fp16 is set, with bf16 taking precedence
# First check hardware config, then transformers config
use_bf16 = False
use_fp16 = False
# Check hardware config first
hardware_precision = hardware_config.get("training_optimizations", {}).get("mixed_precision", "")
if hardware_precision.lower() == "bf16":
use_bf16 = True
log_info("Using BF16 precision from hardware config")
elif hardware_precision.lower() == "fp16":
use_fp16 = True
log_info("Using FP16 precision from hardware config")
else:
# Fall back to transformers config
use_bf16 = transformers_config.get("bf16", False) or transformers_config.get("torch_dtype", "") == "bfloat16"
use_fp16 = transformers_config.get("fp16", False) and not use_bf16 # Only use fp16 if bf16 is not set
log_info(f"Using precision: {'bf16' if use_bf16 else 'fp16' if use_fp16 else 'full precision'}")
# Get per device batch size - from transformers config, but possibly overridden by hardware config
per_device_batch_size = transformers_config.get("training", {}).get("per_device_train_batch_size", 16)
gradient_accumulation_steps = transformers_config.get("training", {}).get("gradient_accumulation_steps", 3)
# Get multi-GPU strategy from hardware config (default to data_parallel)
multi_gpu_strategy = hardware_config.get("training_optimizations", {}).get("multi_gpu_strategy", "data_parallel")
logger.info(f"Multi-GPU strategy: {multi_gpu_strategy}")
# For multi-GPU setup, adjust for better balance
if CUDA_AVAILABLE and NUM_GPUS > 1:
log_info(f"Multi-GPU setup: Adjusting for {NUM_GPUS} GPUs")
# Set up FSDP for multi-GPU training if specified and in distributed mode
fsdp_config = None
if multi_gpu_strategy == "fsdp" and is_distributed and NUM_GPUS > 1:
try:
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
CPUOffload,
)
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
log_info("Using FSDP for distributed training")
# Configure FSDP
fsdp_config = {
"fsdp_transformer_layer_cls_to_wrap": ["LlamaDecoderLayer"],
"fsdp_offload_params": False,
"fsdp_backward_prefetch": "BACKWARD_PRE",
"fsdp_min_num_params": 1e6,
"fsdp_sharding_strategy": 1, # FULL_SHARD
}
if use_bf16 or use_fp16:
precision_type = "bf16" if use_bf16 else "fp16"
fsdp_config["fsdp_state_dict_type"] = "FULL_STATE_DICT"
log_info(f"FSDP using mixed precision: {precision_type}")
except ImportError:
log_info("FSDP imports failed, falling back to standard DDP")
fsdp_config = None
elif multi_gpu_strategy == "fsdp" and not is_distributed:
log_info("FSDP disabled: requires distributed environment (use torchrun or accelerate)")
log_info("Using DataParallel for multi-GPU training instead")
else:
log_info(f"Using {multi_gpu_strategy} for multi-GPU training")
# Get system settings from hardware config
dataloader_workers = hardware_config.get("system_settings", {}).get("dataloader_num_workers", 2)
pin_memory = hardware_config.get("system_settings", {}).get("dataloader_pin_memory", True)
# Set up training arguments
log_info("Setting up training arguments")
training_args = TrainingArguments(
output_dir=transformers_config.get("output_dir", "./results") or transformers_config.get("checkpointing", {}).get("output_dir", "./results"),
num_train_epochs=transformers_config.get("training", {}).get("num_train_epochs", 3),
per_device_train_batch_size=per_device_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=transformers_config.get("training", {}).get("learning_rate", 2e-5),
weight_decay=transformers_config.get("training", {}).get("weight_decay", 0.01),
warmup_ratio=transformers_config.get("training", {}).get("warmup_ratio", 0.05),
lr_scheduler_type=transformers_config.get("training", {}).get("lr_scheduler_type", "cosine"),
logging_steps=transformers_config.get("training", {}).get("logging_steps", 10),
save_strategy=transformers_config.get("checkpointing", {}).get("save_strategy", "steps"),
save_steps=transformers_config.get("checkpointing", {}).get("save_steps", 100),
save_total_limit=transformers_config.get("checkpointing", {}).get("save_total_limit", 3),
fp16=use_fp16,
bf16=use_bf16,
max_grad_norm=transformers_config.get("training", {}).get("max_grad_norm", 1.0),
push_to_hub=transformers_config.get("huggingface_hub", {}).get("push_to_hub", False),
hub_model_id=transformers_config.get("huggingface_hub", {}).get("hub_model_id", None),
hub_token=os.environ.get("HF_TOKEN", None),
report_to="tensorboard",
remove_unused_columns=False, # Keep all columns
gradient_checkpointing=transformers_config.get("training", {}).get("gradient_checkpointing", True),
dataloader_pin_memory=pin_memory,
optim=transformers_config.get("training", {}).get("optim", "adamw_torch"),
ddp_find_unused_parameters=False, # Improve distributed training efficiency
dataloader_drop_last=False, # Process all examples
dataloader_num_workers=dataloader_workers,
no_cuda=False if CUDA_AVAILABLE else True, # Use CUDA if available
# Only add FSDP if we're in distributed mode with FSDP strategy
fsdp=fsdp_config if is_distributed and multi_gpu_strategy == "fsdp" else None,
)
# Create sequential sampler to maintain original dataset order
sequential_sampler = torch.utils.data.SequentialSampler(dataset)
# Initialize trainer first
log_info("Initializing Trainer")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset, # We'll override this with our custom dataloader
data_collator=data_collator,
callbacks=[LoggingCallback()],
)
# Then override the get_train_dataloader method
def custom_get_train_dataloader():
"""Custom dataloader that preserves original dataset order"""
log_info("Creating sequential dataloader to maintain original dataset order")
# Create a simple sequential sampler
sequential_sampler = torch.utils.data.SequentialSampler(dataset)
# Verification of sequence preservation flags - simplified
data_loading_config = dataset_config.get("data_loading", {})
shuffle_enabled = data_loading_config.get("shuffle", False)
if shuffle_enabled:
log_info("WARNING: Shuffle is enabled in configuration! This will be overridden to preserve order.")
# We enforce sequential processing regardless of config
# Log our approach clearly
log_info("Using SequentialSampler to guarantee dataset order is preserved based on prompt_number")
# Verify column order
expected_order = ["prompt_number", "article_id", "conversations"]
if hasattr(dataset, 'column_names'):
actual_order = dataset.column_names
if actual_order == expected_order:
log_info(f"Confirmed dataset columns are in expected order: {', '.join(expected_order)}")
else:
log_info(f"Note: Dataset columns ({', '.join(actual_order)}) are not in expected order ({', '.join(expected_order)})")
log_info("This is handled correctly by field-based access, but noting for clarity")
log_info("Dataset is pre-processed with prompt_number field indicating the correct sequence")
# Calculate batch size based on device availability
if getattr(training_args, "no_cuda", False):
batch_size = training_args.per_device_train_batch_size
else:
batch_size = max(training_args.per_device_train_batch_size * max(1, NUM_GPUS), 1)
log_info(f"Using sequential sampler with batch size {batch_size}")
# Return DataLoader with sequential sampler
return torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=sequential_sampler, # Always use sequential sampler
collate_fn=data_collator,
drop_last=training_args.dataloader_drop_last,
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
# Override the get_train_dataloader method
trainer.get_train_dataloader = custom_get_train_dataloader
# Start training
log_info("=== Starting Training ===")
try:
# Empty cache again right before training
if CUDA_AVAILABLE:
torch.cuda.empty_cache()
log_info("Cleared CUDA cache before training")
# Display compact training info
total_steps = int(len(dataset) / (per_device_batch_size * NUM_GPUS * gradient_accumulation_steps) * training_args.num_train_epochs)
log_info(f"Training plan: {len(dataset)} examples over {training_args.num_train_epochs} epochs ≈ {total_steps} steps")
trainer.train()
log_info("Training completed successfully!")
# Save the final model
log_info("Saving final model...")
trainer.save_model()
log_info(f"Model saved to {training_args.output_dir}")
# Push to hub if enabled
if transformers_config.get("huggingface_hub", {}).get("push_to_hub", False):
hub_id = transformers_config.get("huggingface_hub", {}).get("hub_model_id", "model")
log_info(f"Pushing model to Hugging Face Hub as {hub_id}...")
trainer.push_to_hub()
log_info("Model successfully pushed to Hub")
return 0
except Exception as e:
logger.error(f"Training failed with error: {str(e)}")
# Log CUDA memory info if available in compact format
if CUDA_AVAILABLE:
memory_info = []
for i in range(NUM_GPUS):
allocated = torch.cuda.memory_allocated(i) / 1024**2
reserved = torch.cuda.memory_reserved(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB (max: {max_mem:.1f}MB)")
logger.error(f"GPU memory at failure: {', '.join(memory_info)}")
raise
except Exception as e:
logger.error(f"Error in main training loop: {str(e)}")
return 1
if __name__ == "__main__":
sys.exit(main())
|