File size: 18,325 Bytes
4a1fd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a7635c
 
 
 
 
4a1fd53
 
 
5a7635c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1fd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a7635c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
def format_phi_chat(messages, dataset_config):
    """Format messages according to phi-4's chat template and dataset config."""
    formatted_chat = ""
    
    # Get role templates from config
    roles = dataset_config.get("data_formatting", {}).get("roles", {
        "system": "System: {content}\n\n",
        "human": "Human: {content}\n\n",
        "user": "Human: {content}\n\n",
        "assistant": "Assistant: {content}\n\n"
    })
    
    # Handle research introduction metadata first
    metadata = next((msg for msg in messages if isinstance(msg, dict) and 
                    "[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
    if metadata:
        system_template = roles.get("system", "System: {content}\n\n")
        formatted_chat = system_template.format(content=metadata['content'])
        messages = [msg for msg in messages if msg != metadata]
    
    # Process remaining messages
    for message in messages:
        if not isinstance(message, dict) or "content" not in message:
            logger.warning(f"Skipping invalid message format: {message}")
            continue
            
        role = message.get("role", "").lower()
        content = message.get("content", "")
    
        # Format based on role
        if role == "human" or role == "user":
            template = roles.get("user", roles.get("human", "Human: {content}\n\n"))
            formatted_chat += template.format(content=content)
        elif role == "assistant" or role == "bot":
            template = roles.get("assistant", "Assistant: {content}\n\n")
            formatted_chat += template.format(content=content)
        elif role == "system":
            # For system messages, prepend them
            template = roles.get("system", "System: {content}\n\n")
            formatted_chat = template.format(content=content) + formatted_chat
        else:
            # Default to system for unknown roles
            logger.warning(f"Unknown role '{role}' - treating as system message")
            template = roles.get("system", "System: {content}\n\n")
            formatted_chat += template.format(content=content)
    
    return formatted_chat.strip()

class SimpleDataCollator:
    def __init__(self, tokenizer, dataset_config):
        self.tokenizer = tokenizer
        self.dataset_config = dataset_config
        self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
        self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
        self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
        logger.info(f"SimpleDataCollator initialized - using pre-audited dataset with max_seq_length={self.max_seq_length}")
        logger.info("Using exact dataset structure without reformatting")
        
        # Check if we're on GPU
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"SimpleDataCollator using device: {self.device}")
    
    def __call__(self, features):
        """Process examples preserving exact JSONL structure"""
        batch = {"input_ids": [], "attention_mask": [], "labels": []}
        
        for example in features:
            try:
                # Get ID
                paper_id = example.get("id", "")
                
                # Get conversations - these should already contain role and content
                conversations = example.get("conversations", [])
                if not conversations:
                    self.stats["skipped"] += 1
                    continue
                
                # Directly use the conversations array as input to the model's chat template
                # This preserves the exact structure with roles and content as they are
                try:
                    # Let tokenizer handle the content with the model's chat template
                    inputs = self.tokenizer.apply_chat_template(
                        conversations,
                        return_tensors=None,
                        add_generation_prompt=False
                    )
                except Exception as chat_error:
                    # Fallback if apply_chat_template fails
                    logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)[:100]}")
                    
                    # Create a basic representation of the conversation
                    conversation_text = ""
                    for msg in conversations:
                        if isinstance(msg, dict) and 'content' in msg:
                            conversation_text += msg.get('content', '') + "\n\n"
                    
                    # Basic tokenization
                    inputs = self.tokenizer(
                        conversation_text,
                        add_special_tokens=True,
                        return_tensors=None
                    )
                
                # Apply length cap if needed (shouldn't be necessary for pre-audited data)
                if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
                    logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
                    inputs = inputs[:self.max_seq_length]
                    
                # Create attention mask (1 for all tokens)
                attention_mask = [1] * len(inputs)
                
                if len(inputs) > 0:
                    # For causal language modeling, labels are the same as inputs
                    labels = inputs.copy()
                    
                    batch["input_ids"].append(inputs)
                    batch["attention_mask"].append(attention_mask)
                    batch["labels"].append(labels)
                    
                    self.stats["processed"] += 1
                    self.stats["total_tokens"] += len(inputs)
                    
                    # Debug logging for first few examples
                    log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
                    if self.stats["processed"] <= log_samples:
                        logger.info(f"Example {self.stats['processed']}:")
                        logger.info(f"Paper ID: {paper_id}")
                        logger.info(f"Token count: {len(inputs)}")
                        logger.info(f"Conversation entries: {len(conversations)}")
                else:
                    self.stats["skipped"] += 1
            except Exception as e:
                logger.warning(f"Error processing example: {str(e)[:100]}...")
                logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
                self.stats["skipped"] += 1
                continue
        
        if not batch["input_ids"]:
            logger.warning("Empty batch, returning dummy tensors")
            return {
                "input_ids": torch.zeros((1, 1), dtype=torch.long),
                "attention_mask": torch.zeros((1, 1), dtype=torch.long),
                "labels": torch.zeros((1, 1), dtype=torch.long)
            }
        
        # Pad the batch
        max_length = max(len(ids) for ids in batch["input_ids"])
        
        for i in range(len(batch["input_ids"])):
            padding_length = max_length - len(batch["input_ids"][i])
            if padding_length > 0:
                batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
                batch["attention_mask"][i].extend([0] * padding_length)
                batch["labels"][i].extend([-100] * padding_length)
        
        # Convert to tensors
        batch = {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()}
        
        # Log stats periodically
        log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
        if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
            logger.info(f"Data collator stats: processed={self.stats['processed']}, "
                       f"skipped={self.stats['skipped']}, "
                       f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}")
        
        return batch

class LoggingCallback(TrainerCallback):
    def __init__(self):
        self.last_log_time = time.time()
        self.last_memory_log_time = time.time()
        
    def on_step_end(self, args, state, control, **kwargs):
        # Log every 50 steps or every 5 minutes, whichever comes first
        current_time = time.time()
        
        # Log loss every 50 steps or 5 minutes
        if (state.global_step % 50 == 0) or (current_time - self.last_log_time > 300):
            if state.log_history:
                loss = state.log_history[-1].get('loss', 'N/A')
                # Use simple formatting for better HF Space log compatibility
                log_info(f"Step {state.global_step}: Loss {loss}")
            else:
                log_info(f"Step {state.global_step}: No loss data available")
            self.last_log_time = current_time
        
        # Log memory usage every 15 minutes
        if current_time - self.last_memory_log_time > 900:  # 15 minutes
            if torch.cuda.is_available():
                memory_info = []
                for i in range(torch.cuda.device_count()):
                    allocated = torch.cuda.memory_allocated(i) / 1024**2
                    reserved = torch.cuda.memory_reserved(i) / 1024**2
                    memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB")
                
                # Log in compact format for better visibility
                log_info(f"Memory usage - {', '.join(memory_info)}")
            self.last_memory_log_time = current_time
            
    def on_train_begin(self, args, state, control, **kwargs):
        log_info("=== Training is starting ===")
        
        # Log important training parameters for visibility
        effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps * max(1, torch.cuda.device_count())
        log_info(f"Per device batch size: {args.per_device_train_batch_size}")
        log_info(f"Gradient accumulation steps: {args.gradient_accumulation_steps}")
        log_info(f"Number of GPUs: {max(1, torch.cuda.device_count())}")
        log_info(f"Total effective batch size: {effective_batch_size}")
        log_info(f"Learning rate: {args.learning_rate}")
        log_info(f"Epochs: {args.num_train_epochs}")
        
        # Log dataset information
        if hasattr(trainer, 'train_dataset') and trainer.train_dataset is not None:
            log_info(f"Dataset size: {len(trainer.train_dataset)} examples")
            if len(trainer.train_dataset) > 0:
                try:
                    # Log first few prompt numbers to verify sequence
                    prompt_numbers = []
                    for i in range(min(5, len(trainer.train_dataset))):
                        if 'prompt_number' in trainer.train_dataset[i]:
                            prompt_numbers.append(trainer.train_dataset[i]['prompt_number'])
                    if prompt_numbers:
                        log_info(f"First few prompt numbers: {prompt_numbers}")
                except Exception as e:
                    log_info(f"Error accessing dataset samples: {e}")
        
        # Log memory information in compact format
        if torch.cuda.is_available():
            memory_info = []
            for i in range(torch.cuda.device_count()):
                allocated = torch.cuda.memory_allocated(i) / 1024**2
                max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
                memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
            
            log_info(f"Initial memory usage - {', '.join(memory_info)}")
            
    def on_train_end(self, args, state, control, **kwargs):
        log_info("=== Training completed ===")
        if torch.cuda.is_available():
            memory_info = []
            for i in range(torch.cuda.device_count()):
                allocated = torch.cuda.memory_allocated(i) / 1024**2
                max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
                memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
            
            log_info(f"Final memory usage - {', '.join(memory_info)}")
        
        log_info(f"Total steps: {state.global_step}")
        log_info(f"Final loss: {state.log_history[-1].get('loss', 'N/A') if state.log_history else 'N/A'}")

def custom_get_train_dataloader():
    """Custom dataloader that preserves original dataset order"""
    log_info("Creating sequential dataloader to maintain original dataset order")
    
    # Create a simple sequential sampler
    sequential_sampler = torch.utils.data.SequentialSampler(dataset)
    
    # Verify shuffle is disabled
    data_loading_config = dataset_config.get("data_loading", {})
    shuffle_enabled = data_loading_config.get("shuffle", False)
    
    if shuffle_enabled:
        log_info("CRITICAL ERROR: Shuffle is enabled! This will randomize data entry order!")
        raise ValueError("Dataset shuffling is enabled but sequential processing is required. " +
                      "Please disable shuffling in your configuration.")
    
    # Log our sequential processing approach
    log_info("Using SequentialSampler to guarantee original dataset order is preserved")
    log_info("Data order preservation is critical for proper training sequence")
    
    # Calculate batch size based on device availability
    if getattr(training_args, "no_cuda", False):
        batch_size = training_args.per_device_train_batch_size
    else:
        batch_size = max(training_args.per_device_train_batch_size * max(1, NUM_GPUS), 1)
        
    log_info(f"Using sequential sampler with batch size {batch_size}")
    
    # Return DataLoader with sequential sampler
    return torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        sampler=sequential_sampler,
        collate_fn=data_collator,
        drop_last=training_args.dataloader_drop_last,
        num_workers=training_args.dataloader_num_workers,
        pin_memory=training_args.dataloader_pin_memory,
    ) 

def check_dependencies():
    """Check for critical dependencies and provide useful warnings."""
    # Check for flash attention without attempting import
    flash_attention_available = False
    try:
        import importlib.util
        if importlib.util.find_spec("flash_attn") is not None:
            flash_attention_available = True
            log_info("flash-attn found! Using Flash Attention for faster training.")
        else:
            log_info("flash-attn not found. Training will continue but may be slower.")
            log_info("To use flash attention, install: pip install flash-attn==2.5.2 --no-build-isolation")
            # Still continue as this is optional
    except Exception as e:
        log_info(f"Error checking for flash-attn: {e}")

    # Check for torch CUDA
    if not torch.cuda.is_available():
        log_info("WARNING: CUDA not available. Training will be extremely slow on CPU!")
    else:
        log_info(f"Found {torch.cuda.device_count()} CUDA devices")
    
    # Check for unsloth
    unsloth_available = False
    try:
        import importlib.util
        if importlib.util.find_spec("unsloth") is not None:
            unsloth_available = True
            log_info("Unsloth found! Using Unsloth for optimized training.")
        else:
            log_info("CRITICAL: Unsloth not found. This pipeline requires Unsloth.")
            log_info("Install with: pip install unsloth>=2024.3")
            return False
    except Exception as e:
        log_info(f"Error checking for unsloth: {e}")
        return False
    
    return True 

def main():
    """Main training function with error handling."""
    try:
        # Initialize logging
        log_info("Starting Phi-4 training process")
        
        # Parse arguments
        args = parse_args()
        
        # Load environment variables
        load_env_variables()
        
        # Load config from file
        config = load_configs(args.config)
        
        # Extract specific configurations
        hardware_config = config.get("hardware", {})
        dataset_config = config.get("dataset", {})
        
        # Define multi_gpu_strategy early to prevent undefined errors
        multi_gpu_strategy = hardware_config.get("training_optimizations", {}).get("multi_gpu_strategy", "data_parallel")
        log_info(f"Multi-GPU strategy: {multi_gpu_strategy}")
        
        # Check dependencies
        if not check_dependencies():
            log_info("Aborting due to missing critical dependencies")
            return 1
            
        # Log hardware info
        cuda_available = torch.cuda.is_available()
        num_gpus = torch.cuda.device_count() if cuda_available else 0
        log_info(f"Hardware: {num_gpus} GPUs detected" if cuda_available else "Hardware: CPU only")
        
        # Rest of training code would go here
        # ...
        
        return 0
    except Exception as e:
        log_info(f"Error in main training loop: {str(e)}")
        # Log CUDA memory if available
        if torch.cuda.is_available():
            try:
                memory_info = []
                for i in range(torch.cuda.device_count()):
                    allocated = torch.cuda.memory_allocated(i) / 1024**2
                    reserved = torch.cuda.memory_reserved(i) / 1024**2
                    memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB")
                log_info(f"GPU memory at failure: {', '.join(memory_info)}")
            except:
                pass
        return 1

if __name__ == "__main__":
    import sys
    sys.exit(main())