File size: 9,710 Bytes
dfa0cd0
 
 
 
 
39a5973
dfa0cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from transformers import PretrainedConfig, PreTrainedModel
from torch import nn
import torch

class OctagonConfig(PretrainedConfig):
    model_type = "bert"
    
    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=8,  # Octagon has 8 sides!
        num_attention_heads=8,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        position_embedding_type="absolute",
        classifier_dropout=None,
        num_labels=2,
        **kwargs
    ):
        super().__init__(pad_token_id=pad_token_id, **kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.classifier_dropout = classifier_dropout
        self.num_labels = num_labels

class OctagonEmbeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
        
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        
        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]
        
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
            
        word_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        
        embeddings = word_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

class OctagonSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        
        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
        
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        
    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)
    
    def forward(self, hidden_states):
        query_layer = self.transpose_for_scores(self.query(hidden_states))
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)
        attention_probs = self.dropout(attention_probs)
        
        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        return context_layer

class OctagonSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
    
    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

class OctagonAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = OctagonSelfAttention(config)
        self.output = OctagonSelfOutput(config)
    
    def forward(self, hidden_states):
        self_outputs = self.self(hidden_states)
        attention_output = self.output(self_outputs, hidden_states)
        return attention_output

class OctagonIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        self.intermediate_act_fn = nn.GELU()
    
    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states

class OctagonOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
    
    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

class OctagonLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = OctagonAttention(config)
        self.intermediate = OctagonIntermediate(config)
        self.output = OctagonOutput(config)
    
    def forward(self, hidden_states):
        attention_output = self.attention(hidden_states)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output

class OctagonEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layer = nn.ModuleList([OctagonLayer(config) for _ in range(config.num_hidden_layers)])
    
    def forward(self, hidden_states):
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states)
        return hidden_states

class OctagonModel(PreTrainedModel):
    config_class = OctagonConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.embeddings = OctagonEmbeddings(config)
        self.encoder = OctagonEncoder(config)
        self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
        self.tanh = nn.Tanh()
        
        self.post_init()
    
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            raise ValueError("You have to specify input_ids")
        
        embedding_output = self.embeddings(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids
        )
        
        encoder_outputs = self.encoder(embedding_output)
        pooled_output = self.pooler(encoder_outputs[:, 0])
        pooled_output = self.tanh(pooled_output)
        
        return encoder_outputs, pooled_output

class OctagonForSequenceClassification(PreTrainedModel):
    config_class = OctagonConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.octagon = OctagonModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        
        self.post_init()
    
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, labels=None):
        _, pooled_output = self.octagon(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids
        )
        
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        
        return {"loss": loss, "logits": logits}