File size: 21,682 Bytes
d80a719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#
#  Project     FrameVis - Video Frame Visualizer Script
#  @author     David Madison
#  @link       github.com/dmadison/FrameVis
#  @version    v1.0.1
#  @license    MIT - Copyright (c) 2019 David Madison
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#

import cv2
import numpy as np
import argparse
from enum import Enum, auto
import time


class FrameVis:
	"""
	Reads a video file and outputs an image comprised of n resized frames, spread evenly throughout the file.
	"""

	default_frame_height = None  # auto, or in pixels
	default_frame_width = None  # auto, or in pixels
	default_concat_size = 1  # size of concatenated frame if automatically calculated, in pixels
	default_direction = "horizontal"  # left to right

	def visualize(self, source, nframes, height=default_frame_height, width=default_frame_width, \
		direction=default_direction, trim=False, quiet=True):
		"""
		Reads a video file and outputs an image comprised of n resized frames, spread evenly throughout the file.

		Parameters:
			source (str): filepath to source video file
			nframes (int): number of frames to process from the video
			height (int): height of each frame, in pixels
			width (int): width of each frame, in pixels
			direction (str): direction to concatenate frames ("horizontal" or "vertical")
			quiet (bool): suppress console messages

		Returns:
			visualization image as numpy array
		"""

		video = cv2.VideoCapture(source)  # open video file
		if not video.isOpened():
			raise FileNotFoundError("Source Video Not Found")

		if not quiet:
			print("")  # create space from script call line
		
		# calculate keyframe interval
		video_total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)  # retrieve total frame count from metadata
		if not isinstance(nframes, int) or nframes < 1:
			raise ValueError("Number of frames must be a positive integer")
		elif nframes > video_total_frames:
			raise ValueError("Requested frame count larger than total available ({})".format(video_total_frames))
		keyframe_interval = video_total_frames / nframes  # calculate number of frames between captures

		# grab frame for dimension calculations
		success,image = video.read()  # get first frame
		if not success:
			raise IOError("Cannot read from video file")

		# calculate letterbox / pillarbox trimming, if specified
		matte_type = 0
		if trim == True:
			if not quiet:
				print("Trimming enabled, checking matting... ", end="", flush=True)

			# 10 frame samples, seen as matted if an axis has all color channels at 3 / 255 or lower (avg)
			success, cropping_bounds = MatteTrimmer.determine_video_bounds(source, 10, 3)

			matte_type = 0
			if success:  # only calculate cropping if bounds are valid
				crop_width = cropping_bounds[1][0] - cropping_bounds[0][0] + 1
				crop_height = cropping_bounds[1][1] - cropping_bounds[0][1] + 1

				if crop_height != image.shape[0]:  # letterboxing
					matte_type += 1
				if crop_width != image.shape[1]:  # pillarboxing
					matte_type +=2
			
			if not quiet:
				if matte_type == 0:
					print("no matting detected")
				elif matte_type == 1:
					print("letterboxing detected, cropping {} px from the top and bottom".format(int((image.shape[0] - crop_height) / 2)))
				elif matte_type == 2:
					print("pillarboxing detected, trimming {} px from the sides".format(int((image.shape[1] - crop_width) / 2)))
				elif matte_type == 3:
					print("multiple matting detected - cropping ({}, {}) to ({}, {})".format(image.shape[1], image.shape[0], crop_width, crop_height))

		# calculate height
		if height is None:  # auto-calculate
			if direction == "horizontal":  # non-concat, use video size
				if matte_type & 1 == 1:  # letterboxing present
					height = crop_height
				else:
					height = image.shape[0]  # save frame height
			else:  # concat, use default value
				height = FrameVis.default_concat_size
		elif not isinstance(height, int) or height < 1:
			raise ValueError("Frame height must be a positive integer")
		
		# calculate width
		if width is None:  # auto-calculate
			if direction == "vertical":  # non-concat, use video size
				if matte_type & 2 == 2:  # pillarboxing present
					width = crop_width
				else:
					width = image.shape[1]  # save frame width
			else:  # concat, use default value
				width = FrameVis.default_concat_size
		elif not isinstance(width, int) or width < 1:
			raise ValueError("Frame width must be a positive integer")

		# assign direction function and calculate output size
		if direction == "horizontal":
			concatenate = cv2.hconcat
			output_width = width * nframes
			output_height = height
		elif direction == "vertical":
			concatenate = cv2.vconcat
			output_width = width
			output_height = height * nframes
		else:
			raise ValueError("Invalid direction specified")

		if not quiet:
			aspect_ratio = output_width / output_height
			print("Visualizing \"{}\" - {} by {} ({:.2f}), from {} frames (every {:.2f} seconds)"\
				.format(source, output_width, output_height, aspect_ratio, nframes, FrameVis.interval_from_nframes(source, nframes)))

		# set up for the frame processing loop
		next_keyframe = keyframe_interval / 2  # frame number for the next frame grab, starting evenly offset from start/end
		finished_frames = 0  # counter for number of processed frames
		output_image = None
		progress = ProgressBar("Processing:")

		while True:
			if finished_frames == nframes:
				break  # done!

			video.set(cv2.CAP_PROP_POS_FRAMES, int(next_keyframe))  # move cursor to next sampled frame
			success,image = video.read()  # read the next frame

			if not success:
				raise IOError("Cannot read from video file (frame {} out of {})".format(int(next_keyframe), video_total_frames))

			if matte_type != 0:  # crop out matting, if specified and matting is present
				image = MatteTrimmer.crop_image(image, cropping_bounds)

			image = cv2.resize(image, (width, height))  # resize to output size

			# save to output image
			if output_image is None:
				output_image = image
			else:
				output_image = concatenate([output_image, image])  # concatenate horizontally from left -> right

			finished_frames += 1
			next_keyframe += keyframe_interval  # set next frame capture time, maintaining floats

			if not quiet:
				progress.write(finished_frames / nframes)  # print progress bar to the console

		video.release()  # close video capture

		return output_image

	@staticmethod
	def average_image(image, direction):
		"""
		Averages the colors in an axis across an entire image

		Parameters:
			image (arr x.y.c): image as 3-dimensional numpy array
			direction (str): direction to average frames ("horizontal" or "vertical")

		Returns:
			image, with pixel data averaged along provided axis
		"""

		height, width, depth = image.shape

		if direction == "horizontal":
			scale_height = 1
			scale_width = width
		elif direction == "vertical":
			scale_height = height
			scale_width = 1
		else:
			raise ValueError("Invalid direction specified")

		image = cv2.resize(image, (scale_width, scale_height))  # scale down to '1', averaging values
		image = cv2.resize(image, (width, height))  # scale back up to size

		return image

	@staticmethod
	def motion_blur(image, direction, blur_amount):
		"""
		Blurs the pixels in a given axis across an entire image.

		Parameters:
			image (arr x.y.c): image as 3-dimensional numpy array
			direction (str): direction of stacked images for blurring ("horizontal" or "vertical")
			blur_amount (int): how much to blur the image, as the convolution kernel size

		Returns:
			image, with pixel data blurred along provided axis
		"""
		
		kernel = np.zeros((blur_amount, blur_amount))  # create convolution kernel

		# fill group with '1's
		if direction == "horizontal":
			kernel[:, int((blur_amount - 1)/2)] = np.ones(blur_amount)  # fill center column (blurring vertically for horizontal concat)
		elif direction == "vertical":
			kernel[int((blur_amount - 1)/2), :] = np.ones(blur_amount)  # fill center row (blurring horizontally for vertical concat)
		else:
			raise ValueError("Invalid direction specified")

		kernel /= blur_amount  # normalize kernel matrix

		return cv2.filter2D(image, -1, kernel)  # filter using kernel with same depth as source

	@staticmethod
	def nframes_from_interval(source, interval):
		"""
		Calculates the number of frames available in a video file for a given capture interval

		Parameters:
			source (str): filepath to source video file
			interval (float): capture frame every i seconds

		Returns:
			number of frames per time interval (int)
		"""
		video = cv2.VideoCapture(source)  # open video file
		if not video.isOpened():
			raise FileNotFoundError("Source Video Not Found")

		frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)  # total number of frames
		fps = video.get(cv2.CAP_PROP_FPS)  # framerate of the video
		duration = frame_count / fps  # duration of the video, in seconds

		video.release()  # close video capture

		return int(round(duration / interval))  # number of frames per interval

	@staticmethod
	def interval_from_nframes(source, nframes):
		"""
		Calculates the capture interval, in seconds, for a video file given the
		number of frames to capture

		Parameters:
			source (str): filepath to source video file
			nframes (int): number of frames to capture from the video file

		Returns:
			time interval (seconds) between frame captures (float)
		"""
		video = cv2.VideoCapture(source)  # open video file
		if not video.isOpened():
			raise FileNotFoundError("Source Video Not Found")

		frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)  # total number of frames
		fps = video.get(cv2.CAP_PROP_FPS)  # framerate of the video
		keyframe_interval = frame_count / nframes  # calculate number of frames between captures

		video.release()  # close video capture

		return keyframe_interval / fps  # seconds between captures


class MatteTrimmer:
	"""
	Functions for finding and removing black mattes around video frames
	"""

	@staticmethod
	def find_matrix_edges(matrix, threshold):
		"""
		Finds the start and end points of a 1D array above a given threshold

		Parameters:
			matrix (arr, 1.x): 1D array of data to check
			threshold (value): valid data is above this trigger level

		Returns:
			tuple with the array indices of data bounds, start and end
		"""

		if not isinstance(matrix, (list, tuple, np.ndarray)) or len(matrix.shape) != 1:
			raise ValueError("Provided matrix is not the right size (must be 1D)")

		data_start = None
		data_end = None

		for value_id, value in enumerate(matrix):
			if value > threshold:
				if data_start is None:
					data_start = value_id
				data_end = value_id

		return (data_start, data_end)

	@staticmethod
	def find_larger_bound(first, second):
		"""
		Takes two sets of diagonal rectangular boundary coordinates and determines
		the set of rectangular boundary coordinates that contains both

		Parameters:
			first  (arr, 1.2.2): pair of rectangular coordinates, in the form [(X,Y), (X,Y)]
			second (arr, 1.2.2): pair of rectangular coordinates, in the form [(X,Y), (X,Y)]

			Where for both arrays the first coordinate is in the top left-hand corner, 
			and the second coordinate is in the bottom right-hand corner.

		Returns:
			numpy coordinate matrix containing both of the provided boundaries
		"""
		left_edge  = first[0][0] if first[0][0] <= second[0][0] else second[0][0]
		right_edge = first[1][0] if first[1][0] >= second[1][0] else second[1][0]

		top_edge = first[0][1] if first[0][1] <= second[0][1] else second[0][1]
		bottom_edge = first[1][1] if first[1][1] >= second[1][1] else second[1][1]

		return np.array([[left_edge, top_edge], [right_edge, bottom_edge]])

	@staticmethod
	def valid_bounds(bounds):
		"""
		Checks if the frame bounds are a valid format

		Parameters:
			bounds (arr, 1.2.2): pair of rectangular coordinates, in the form [(X,Y), (X,Y)]

		Returns:
			True or False
		"""

		for x, x_coordinate in enumerate(bounds):
			for y, y_coordinate in enumerate(bounds):
				if bounds[x][y] is None:
					return False  # not a number

		if bounds[0][0] > bounds[1][0]  or \
			bounds[0][1] > bounds[1][1]:
			return False  # left > right or top > bottom

		return True

	@staticmethod
	def determine_image_bounds(image, threshold):
		"""
		Determines if there are any hard mattes (black bars) surrounding
		an image on either the top (letterboxing) or the sides (pillarboxing)

		Parameters:
			image (arr, x.y.c): image as 3-dimensional numpy array
			threshold (8-bit int): min color channel value to judge as 'image present'

		Returns:
			success (bool): True or False if the bounds are valid
			image_bounds: numpy coordinate matrix with the two opposite corners of the 
				image bounds, in the form [(X,Y), (X,Y)]
		"""

		height, width, depth = image.shape

		# check for letterboxing
		horizontal_sums = np.sum(image, axis=(1,2))  # sum all color channels across all rows
		hthreshold = (threshold * width * depth)  # must be below every pixel having a value of "threshold" in every channel
		vertical_edges = MatteTrimmer.find_matrix_edges(horizontal_sums, hthreshold)

		# check for pillarboxing
		vertical_sums = np.sum(image, axis=(0,2))  # sum all color channels across all columns
		vthreshold = (threshold * height * depth)  # must be below every pixel having a value of "threshold" in every channel
		horizontal_edges = MatteTrimmer.find_matrix_edges(vertical_sums, vthreshold)

		image_bounds = np.array([[horizontal_edges[0], vertical_edges[0]], [horizontal_edges[1], vertical_edges[1]]])

		return MatteTrimmer.valid_bounds(image_bounds), image_bounds

	@staticmethod
	def determine_video_bounds(source, nsamples, threshold):
		"""
		Determines if any matting exists in a video source

		Parameters:
			source (str): filepath to source video file
			nsamples (int): number of frames from the video to determine bounds,
				evenly spaced throughout the video
			threshold (8-bit int): min color channel value to judge as 'image present'

		Returns:
			success (bool): True or False if the bounds are valid
			video_bounds: numpy coordinate matrix with the two opposite corners of the 
				video bounds, in the form [(X,Y), (X,Y)]
		"""
		video = cv2.VideoCapture(source)  # open video file
		if not video.isOpened():
			raise FileNotFoundError("Source Video Not Found")

		video_total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)  # retrieve total frame count from metadata
		if not isinstance(nsamples, int) or nsamples < 1:
			raise ValueError("Number of samples must be a positive integer")
		keyframe_interval = video_total_frames / nsamples  # calculate number of frames between captures

		# open video to make results consistent with visualizer
		# (this also GREATLY increases the read speed? no idea why)
		success,image = video.read()  # get first frame
		if not success:
			raise IOError("Cannot read from video file")

		next_keyframe = keyframe_interval / 2  # frame number for the next frame grab, starting evenly offset from start/end
		video_bounds = None

		for frame_number in range(nsamples):
			video.set(cv2.CAP_PROP_POS_FRAMES, int(next_keyframe))  # move cursor to next sampled frame
			success,image = video.read()  # read the next frame

			if not success:
				raise IOError("Cannot read from video file")
			
			success, frame_bounds = MatteTrimmer.determine_image_bounds(image, threshold)

			if not success:
				continue  # don't compare bounds, frame bounds are invalid

			video_bounds = frame_bounds if video_bounds is None else MatteTrimmer.find_larger_bound(video_bounds, frame_bounds)
			next_keyframe += keyframe_interval  # set next frame capture time, maintaining floats

		video.release()  # close video capture

		return MatteTrimmer.valid_bounds(video_bounds), video_bounds

	@staticmethod
	def crop_image(image, bounds):
		"""
		Crops a provided image by the coordinate bounds pair provided.

		Parameters:
			image (arr, x.y.c): image as 3-dimensional numpy array
			second (arr, 1.2.2): pair of rectangular coordinates, in the form [(X,Y), (X,Y)]

		Returns:
			image as 3-dimensional numpy array, cropped to the coordinate bounds
		"""
		return image[bounds[0][1]:bounds[1][1], bounds[0][0]:bounds[1][0]]

class ProgressBar:
	"""
	Generates a progress bar for the console output

	Args:
		pre (str): string to prepend before the progress bar
		bar_length (int): length of the progress bar itself, in characters
		print_elapsed (bool): option to print time elapsed or not

	Attributes:
		pre (str): string to prepend before the progress bar
		bar_length (int): length of the progress bar itself, in characters
		print_time (bool): option to print time elapsed or not
		print_elapsed (int): starting time for the progress bar, in unix seconds

	"""

	def __init__(self, pre="", bar_length=25, print_elapsed=True):
		pre = (pre + '\t') if pre != "" else pre  # append separator if string present
		self.pre = pre
		self.bar_length = bar_length
		self.print_elapsed = print_elapsed
		if self.print_elapsed:
			self.__start_time = time.time()  # store start time as unix

	def write(self, percent):
		"""Prints a progress bar to the console based on the input percentage (float)."""
		term_char = '\r' if percent < 1.0 else '\n'  # rewrite the line unless finished

		filled_size = int(round(self.bar_length * percent))  # number of 'filled' characters in the bar
		progress_bar = "#" * filled_size + " " * (self.bar_length - filled_size)  # progress bar characters, as a string

		time_string = ""
		if self.print_elapsed:
			time_elapsed = time.time() - self.__start_time
			time_string = "\tTime Elapsed: {}".format(time.strftime("%H:%M:%S", time.gmtime(time_elapsed)))

		print("{}[{}]\t{:.2%}{}".format(self.pre, progress_bar, percent, time_string), end=term_char, flush=True)
		


def main():
	parser = argparse.ArgumentParser(description="video frame visualizer and movie barcode generator", add_help=False)  # removing help so I can use '-h' for height

	parser.add_argument("source", help="file path for the video file to be visualized", type=str)
	parser.add_argument("destination", help="file path output for the final image", type=str)
	parser.add_argument("-n", "--nframes", help="the number of frames in the visualization", type=int)
	parser.add_argument("-i", "--interval", help="interval between frames for the visualization", type=float)
	parser.add_argument("-h", "--height", help="the height of each frame, in pixels", type=int, default=FrameVis.default_frame_height)
	parser.add_argument("-w", "--width", help="the output width of each frame, in pixels", type=int, default=FrameVis.default_frame_width)
	parser.add_argument("-d", "--direction", help="direction to concatenate frames, horizontal or vertical", type=str, \
		choices=["horizontal", "vertical"],	default=FrameVis.default_direction)
	parser.add_argument("-t", "--trim", help="detect and trim any hard matting (letterboxing or pillarboxing)", action='store_true', default=False)
	parser.add_argument("-a", "--average", help="average colors for each frame", action='store_true', default=False)
	parser.add_argument("-b", "--blur", help="apply motion blur to the frames (kernel size)", type=int, nargs='?', const=100, default=0)
	parser.add_argument("-q", "--quiet", help="mute console outputs", action='store_true', default=False)
	parser.add_argument("--help", action="help", help="show this help message and exit")

	args = parser.parse_args()

	# check number of frames arguments
	if args.nframes is None:
		if args.interval is not None:  # calculate nframes from interval
			args.nframes = FrameVis.nframes_from_interval(args.source, args.interval)
		else:
			parser.error("You must provide either an --(n)frames or --(i)nterval argument")

	# check postprocessing arguments
	if args.average is True and args.blur != 0:
		parser.error("Cannot (a)verage and (b)lur, you must choose one or the other")

	fv = FrameVis()

	output_image = fv.visualize(args.source, args.nframes, height=args.height, width=args.width, \
		direction=args.direction, trim=args.trim, quiet=args.quiet)

	# postprocess
	if args.average or args.blur != 0:
		if args.average:
			if not args.quiet:
				print("Averaging frame colors... ", end="", flush=True)
			output_image = fv.average_image(output_image, args.direction)
		
		if args.blur != 0:
			if not args.quiet:
				print("Adding motion blur to final frame... ", end="", flush=True)
			output_image = fv.motion_blur(output_image, args.direction, args.blur)

		if not args.quiet:
			print("done")
	
	cv2.imwrite(args.destination, output_image)  # save visualization to file

	if not args.quiet:
		print("Visualization saved to {}".format(args.destination))


if __name__ == "__main__":
	main()