File size: 1,169 Bytes
954f6bb
 
 
 
 
 
 
 
 
 
0de01b8
 
954f6bb
 
 
 
 
 
 
 
dfdd372
954f6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from transformers import pipeline
import os
import gradio as gr
import torch

#Text to text
#translator = pipeline(task="translation",
#                      model="facebook/nllb-200-distilled-600M",
#                      torch_dtype=torch.bfloat16) 
#Text to audio
pipe = pipeline("text-to-speech", model="suno/bark-small",
                      torch_dtype=torch.bfloat16)

                
demo = gr.Blocks()
def transcribe_speech(filepath):
    if filepath is None:
        gr.Warning("No text found, please retry.")
        return ""
    narrated_text=pipe(filepath)
    return narrated_text['sampling_rate'],narrated_text['audio']
    
mic_transcribe = gr.Interface(
    fn=transcribe_speech,
    inputs=gr.Textbox(label="Text",lines=3),
    outputs="audio",
    allow_flagging="never")

file_transcribe = gr.Interface(
    fn=transcribe_speech,
    inputs=gr.Audio(sources="upload",
                    type="filepath"),
    outputs="audio",
    #outputs=gr.Audio(label="Translated Message"),
    allow_flagging="never"
)
with demo:
    gr.TabbedInterface(
        [mic_transcribe],
        ["Transcribe Microphone"],
    )

demo.launch(share=True)
demo.close()