File size: 3,890 Bytes
cfcca1d 3d8ce2d 834ae1c 3d8ce2d cfcca1d 67fdf41 7a9dcc4 3096731 06aea67 cfcca1d f942880 cfcca1d 3096731 f942880 cfcca1d 0ee6b9d cfcca1d 77ee048 cfcca1d 364b225 f942880 364b225 f942880 cfcca1d 364b225 cfcca1d 364b225 eb0ec92 cfcca1d 364b225 8abd5b9 7c5b0a3 782c184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain_text_splitters import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import PyPDFLoader
from langchain_chroma import Chroma
import tempfile
st.set_page_config(page_title="Document Genie", layout="wide")
st.markdown("""
## Document Genie: Get instant insights from your Documents
This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
### How It Works
Follow these simple steps to interact with the chatbot:
1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
""")
#def get_pdf(pdf_docs):
# loader = PyPDFLoader(pdf_docs)
# docs = loader.load()
# return docs
def get_pdf(uploaded_file):
if uploaded_file :
temp_file = "./temp.pdf"
with open(temp_file, "wb") as file:
file.write(uploaded_file.getvalue())
file_name = uploaded_file.name
loader = PyPDFLoader(temp_file)
docs = loader.load_and_split()
return docs
def text_splitter(text):
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size=500,
chunk_overlap=20,
separators=["\n\n","\n"," ",".",","])
chunks=text_splitter.split_documents(text)
return chunks
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=GOOGLE_API_KEY)
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def embedding(chunk,query):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
db = Chroma.from_documents(chunk,embeddings, persist_directory="./chroma_db")
docs = db3.similarity_search(query)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
st.write("Reply: ", response["output_text"])
def main():
st.header("Chat with your pdf💁")
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader")
query = st.text_input("Ask a Question from the PDF Files", key="query")
if st.button("Submit & Process", key="process_button"):
with st.spinner("Processing..."):
raw_text = get_pdf(pdf_docs)
text_chunks = text_splitter(raw_text)
if query:
embedding(text_chunks,query)
st.success("Done")
if __name__ == "__main__":
main() |