File size: 17,491 Bytes
1d8f921
f4114be
 
1d8f921
 
3162525
1d8f921
a237eb7
ab00ded
 
1d8f921
3162525
 
 
ab00ded
1d8f921
a237eb7
1d8f921
 
 
 
 
 
 
3162525
1d8f921
 
 
a237eb7
1d8f921
 
 
 
 
 
 
 
 
82cc8c9
1d8f921
 
 
 
 
a237eb7
1d8f921
 
 
 
 
 
 
 
 
82cc8c9
1d8f921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3162525
a237eb7
 
1d8f921
a237eb7
 
1d8f921
a237eb7
 
 
 
1d8f921
 
a237eb7
 
1d8f921
 
a237eb7
 
1d8f921
a237eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8f921
a237eb7
1d8f921
 
 
8588d27
1d8f921
 
8588d27
1d8f921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237eb7
 
 
1d8f921
 
 
 
a237eb7
1d8f921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237eb7
 
 
1d8f921
 
 
a237eb7
1d8f921
 
 
 
 
 
 
 
 
 
 
a237eb7
 
 
1d8f921
 
 
 
 
 
 
 
 
a237eb7
 
1d8f921
 
a237eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8f921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237eb7
 
 
 
 
3162525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237eb7
 
 
 
 
3162525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8f921
 
 
 
 
 
3162525
1d8f921
 
 
3162525
a237eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3162525
 
 
a237eb7
 
3162525
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# --- Imports ---
import os
import sys
import cv2
import torch
import gradio as gr
import numpy as np
from PIL import Image, ImageOps
import io
import base64
import traceback
import tempfile
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
import spaces

# Import model-specific libraries
try:
    from basicsr.archs.srvgg_arch import SRVGGNetCompact
    from gfpgan.utils import GFPGANer
    from realesrgan.utils import RealESRGANer
    print("Successfully imported model libraries.")
except ImportError as e:
    print(f"Error importing model libraries: {e}")
    print("Please ensure basicsr, gfpgan, realesrgan are installed")
    sys.exit(1)

# --- Constants ---
OUTPUT_DIR = 'output'
os.makedirs(OUTPUT_DIR, exist_ok=True)

# --- Model Weight Downloads ---
MODEL_FILES = {
    'realesr-general-x4v3.pth': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
    'GFPGANv1.2.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth',
    'GFPGANv1.3.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
    'GFPGANv1.4.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
    'RestoreFormer.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth',
}
print("Downloading model weights...")
for filename, url in MODEL_FILES.items():
    try:
        if not os.path.exists(filename):
            print(f"Downloading {filename}...")
            os.system(f"wget -q {url} -P .") 
    except Exception as e:
        print(f"Error downloading {filename}: {e}")

# --- Sample Image Downloads ---
SAMPLE_IMAGES = {
    'lincoln.jpg': 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
    'AI-generate.jpg': 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
    'Blake_Lively.jpg': 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
    '10045.png': 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png'
}
for filename, url in SAMPLE_IMAGES.items():
    try:
        if not os.path.exists(filename):
             torch.hub.download_url_to_file(url, filename, progress=False)
    except Exception as e:
        print(f"Warning: Error downloading sample image {filename}: {e}")

# --- Model Initialization (Background Enhancer) ---
upsampler = None
try:
    model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
    model_path = 'realesr-general-x4v3.pth'
    half = torch.cuda.is_available()
    upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
except Exception as e:
    print(f"Error creating RealESRGAN upsampler: {e}")
    print(traceback.format_exc())
    print("Warning: GFPGAN will run without background enhancement.")

# --- Universal processing function ---
@spaces.GPU(duration=90)
def process_image(input_image, version, scale):
    """
    Universal image processing function that handles multiple input types.
    
    Args:
        input_image: Can be either a filepath string, PIL Image, or numpy array
        version (str): GFPGAN model version ('v1.2', 'v1.3', 'v1.4', 'RestoreFormer')
        scale (float): Rescaling factor for the final output relative to original
        
    Returns:
        tuple: (PIL.Image.Image | None, str | None)
               - Output PIL image (RGB) or None on error
               - Base64 encoded output image string (data URI) or an error message string
    """
    input_pil_image = None
    
    # --- Handle different input types ---
    try:
        # Case 1: Input is a file path string
        if isinstance(input_image, str):
            print(f"Loading image from filepath: {input_image}")
            if not os.path.exists(input_image):
                error_msg = f"Error: Input image filepath does not exist: '{input_image}'"
                print(error_msg)
                return None, error_msg
            input_pil_image = Image.open(input_image)
            
        # Case 2: Input is already a PIL Image
        elif isinstance(input_image, Image.Image):
            print("Input is already a PIL Image")
            input_pil_image = input_image
            
        # Case 3: Input is a numpy array (from OpenCV or other sources)
        elif isinstance(input_image, np.ndarray):
            print("Converting numpy array to PIL Image")
            # If it's BGR (from OpenCV), convert to RGB
            if input_image.shape[2] == 3:  # Has 3 channels
                input_pil_image = Image.fromarray(cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB))
            else:
                input_pil_image = Image.fromarray(input_image)
                
        # Case 4: Input might be from Gradio (like a temporary file or numpy array)
        else:
            print(f"Unrecognized input type: {type(input_image)}")
            # Try to handle it as a temporary file or other Gradio-provided input
            if hasattr(input_image, "name") and os.path.exists(input_image.name):
                input_pil_image = Image.open(input_image.name)
            else:
                error_msg = f"Unsupported input type: {type(input_image)}"
                print(error_msg)
                return None, error_msg
                
        print(f"Successfully loaded image. Mode: {input_pil_image.mode}, size: {input_pil_image.size}")
        
    except Exception as load_err:
        error_msg = f"Error loading image: {load_err}"
        print(error_msg)
        print(traceback.format_exc())
        return None, error_msg

    if input_pil_image is None:
        return None, "Error: Failed to load input image."

    print(f"Processing image with GFPGAN version: {version}, scale: {scale}")

    # --- Handle EXIF Orientation ---
    original_size_before_exif = input_pil_image.size
    try:
        input_pil_image = ImageOps.exif_transpose(input_pil_image)
        if input_pil_image.size != original_size_before_exif:
            print(f"Image size changed by EXIF transpose: {original_size_before_exif} -> {input_pil_image.size}")
    except Exception as exif_err:
        print(f"Warning: Could not apply EXIF transpose: {exif_err}")

    w_orig, h_orig = input_pil_image.size
    print(f"Input size for processing (WxH): {w_orig}x{h_orig}")

    # Convert PIL Image to OpenCV format (BGR numpy array)
    try:
        img_mode = input_pil_image.mode
        if img_mode != 'RGB':
            print(f"Converting input image from {img_mode} to RGB")
            input_pil_image = input_pil_image.convert('RGB')
        img_bgr = np.array(input_pil_image)[:, :, ::-1].copy()
    except Exception as conversion_err:
        error_msg = f"Error converting PIL image to OpenCV format: {conversion_err}"
        print(error_msg)
        return None, error_msg

    # --- Start GFPGAN Processing ---
    try:
        h, w = img_bgr.shape[0:2]
        if h > 4000 or w > 4000:
            print(f'Warning: Image size ({w}x{h}) is very large, processing might be slow or fail.')

        model_map = {
            'v1.2': 'GFPGANv1.2.pth', 'v1.3': 'GFPGANv1.3.pth',
            'v1.4': 'GFPGANv1.4.pth', 'RestoreFormer': 'RestoreFormer.pth'
        }
        arch_map = {
            'v1.2': 'clean', 'v1.3': 'clean', 'v1.4': 'clean',
            'RestoreFormer': 'RestoreFormer'
        }

        if version not in model_map:
            error_msg = f"Error: Unknown version selected: {version}"
            print(error_msg)
            return None, error_msg
        model_path = model_map[version]
        arch = arch_map[version]
        if not os.path.exists(model_path):
            error_msg = f"Error: Model file not found for version {version}: {model_path}"
            print(error_msg)
            return None, error_msg

        current_bg_upsampler = upsampler
        if not current_bg_upsampler:
            print("Warning: RealESRGAN upsampler not available. Background enhancement disabled.")

        face_enhancer = GFPGANer(
            model_path=model_path, upscale=2, arch=arch,
            channel_multiplier=2, bg_upsampler=current_bg_upsampler
        )

        print(f"Running GFPGAN enhancement with {version}...")
        _, _, output_bgr = face_enhancer.enhance(
            img_bgr, has_aligned=False, only_center_face=False, paste_back=True
        )
        if output_bgr is None:
            error_msg = "Error: GFPGAN enhancement returned None."
            print(error_msg)
            return None, error_msg
        print(f"Enhancement complete. Intermediate output shape (HxWxC BGR): {output_bgr.shape}")

        # --- Post-processing (Resizing) ---
        target_scale_factor = float(scale)
        h_gfpgan, w_gfpgan = output_bgr.shape[0:2]
        target_w = int(w_orig * target_scale_factor)
        target_h = int(h_orig * target_scale_factor)

        if target_w <= 0 or target_h <= 0:
            print(f"Warning: Invalid target size ({target_w}x{target_h}) calculated from scale {scale}. Using GFPGAN output size {w_gfpgan}x{h_gfpgan}.")
            target_w, target_h = w_gfpgan, h_gfpgan

        if abs(target_w - w_gfpgan) > 2 or abs(target_h - h_gfpgan) > 2:
            print(f"Resizing GFPGAN output ({w_gfpgan}x{h_gfpgan}) to target ({target_w}x{target_h}) based on scale {target_scale_factor}...")
            interpolation = cv2.INTER_LANCZOS4 if (target_w * target_h) > (w_gfpgan * h_gfpgan) else cv2.INTER_AREA
            try:
                output_bgr = cv2.resize(output_bgr, (target_w, target_h), interpolation=interpolation)
            except cv2.error as resize_err:
                error_msg = f"Error during OpenCV resize: {resize_err}. Returning image before final resize attempt."
                print(error_msg)
                output_pil = Image.fromarray(cv2.cvtColor(output_bgr, cv2.COLOR_BGR2RGB))
                base64_output = None
                try:
                    buffered = io.BytesIO()
                    output_pil.save(buffered, format="WEBP", quality=85)
                    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
                    base64_output = f"data:image/webp;base64,{img_str}"
                except Exception as enc_err:
                    print(f"Error encoding fallback image: {enc_err}")
                    error_msg += f" | Encoding Error: {enc_err}"
                return output_pil, base64_output if base64_output else error_msg

        # --- Convert final result back to PIL (RGB) ---
        output_pil = Image.fromarray(cv2.cvtColor(output_bgr, cv2.COLOR_BGR2RGB))
        print(f"Final output image size (WxH PIL): {output_pil.size}")

        # --- Encode final PIL image to Base64 for API ---
        base64_output = None
        try:
            buffered = io.BytesIO()
            output_pil.save(buffered, format="WEBP", quality=90)
            img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
            base64_output = f"data:image/webp;base64,{img_str}"
        except Exception as enc_err:
            error_msg = f"Error encoding final image to base64: {enc_err}"
            print(error_msg)
            return output_pil, error_msg

        success_msg = f"Success! Output size: {output_pil.size[0]}x{output_pil.size[1]}"
        return output_pil, base64_output if base64_output else success_msg

    except Exception as error:
        error_msg = f"Error during GFPGAN processing: {error}"
        print(error_msg)
        print(traceback.format_exc())
        error_img = None
        try:
            error_img = Image.new('RGB', (100, 50), color = 'red')
        except Exception: 
            pass
        return error_img, error_msg

# --- Function to handle file upload for API ---
def handle_file_upload(file_data):
    """Save uploaded file to temporary directory and return path"""
    try:
        print(f"Handling file upload: {type(file_data)}")
        
        # Create a temporary file
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
        temp_path = temp_file.name
        
        # If it's bytes, write directly
        if isinstance(file_data, bytes):
            with open(temp_path, 'wb') as f:
                f.write(file_data)
        # If it's a file-like object (from FastAPI/Gradio)
        elif hasattr(file_data, 'file'):
            content = file_data.file.read()
            with open(temp_path, 'wb') as f:
                f.write(content)
        # If it's a string path, it's already saved
        elif isinstance(file_data, str) and os.path.exists(file_data):
            return file_data
        else:
            raise ValueError(f"Unsupported file data type: {type(file_data)}")
            
        print(f"File saved to temporary path: {temp_path}")
        return temp_path
    
    except Exception as e:
        print(f"Error handling file upload: {e}")
        print(traceback.format_exc())
        raise

# --- API inference function ---
@spaces.GPU(duration=90)
def inference(input_image, version, scale):
    """
    API-friendly wrapper that ensures consistent behavior between web and API interfaces.
    """
    try:
        # If input is a file upload (from API), save it to a temporary path
        if not isinstance(input_image, (str, Image.Image, np.ndarray)) and not (hasattr(input_image, 'name') and os.path.exists(input_image.name)):
            file_path = handle_file_upload(input_image)
            input_image = file_path
        
        # Process the image
        output_pil, base64_or_msg = process_image(input_image, version, scale)
        
        # Return the processed results
        return output_pil, base64_or_msg
    except Exception as e:
        print(f"Error in inference: {e}")
        print(traceback.format_exc())
        # Return a placeholder error image and message
        error_img = Image.new('RGB', (100, 50), color='red')
        return error_img, f"Error: {str(e)}"

# --- Get the FastAPI app from Gradio ---
app = FastAPI()

# Add CORS middleware to allow cross-origin requests
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allows all origins
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

# --- Direct API endpoint for file upload ---
@app.post("/api/direct-process")
async def direct_process(file: UploadFile = File(...), version: str = "v1.4", scale: float = 2.0):
    try:
        # Save the uploaded file
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
        temp_path = temp_file.name
        with open(temp_path, 'wb') as f:
            f.write(await file.read())
        
        # Process the image
        _, base64_image = process_image(temp_path, version, scale)
        
        # Clean up
        os.unlink(temp_path)
        
        # Return base64 image data
        if base64_image and base64_image.startswith('data:image'):
            return {"success": True, "image": base64_image}
        else:
            return {"success": False, "error": base64_image or "Unknown error"}
    except Exception as e:
        print(f"Error in direct-process API: {e}")
        print(traceback.format_exc())
        return {"success": False, "error": str(e)}

# --- Gradio Interface Definition ---
title = "GFPGAN: Practical Face Restoration"
description = """Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.
<br>Restore your <b>old photos</b> or improve <b>AI-generated faces</b>. Upload an image to start.
<br>If helpful, please ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Original Github Repo</a>.
<br>API endpoint available at `/predict` or `/api/direct-process`. Returns processed image and base64 data.
"""
article = "Questions? Contact the original creators (see GFPGAN repo)."

# Use upload component for more compatibility
inputs = [
    gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"]),
    gr.Radio(
        ['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'],
        type="value", value='v1.4', label='GFPGAN Version',
        info="v1.4 recommended. RestoreFormer for diverse poses."
    ),
    gr.Number(
        label="Rescaling Factor", value=2,
        info="Final output size multiplier relative to original input size (e.g., 2 = 2x original WxH)."
    ),
]

outputs = [
    gr.Image(type="pil", label="Output Image"),
    gr.Textbox(label="Output Info / Base64 Data", interactive=False, visible=True)
]

examples = [
    ['AI-generate.jpg', 'v1.4', 2],
    ['lincoln.jpg', 'v1.4', 2],
    ['Blake_Lively.jpg', 'v1.4', 2],
    ['10045.png', 'v1.4', 2]
]

# --- Gradio Interface Instantiation ---
demo = gr.Interface(
    fn=inference,
    inputs=inputs,
    outputs=outputs,
    title=title,
    description=description,
    article=article,
    examples=examples,
    cache_examples=False,
    allow_flagging='never'
)

# Mount the Gradio app
app = gr.mount_gradio_app(app, demo, path="/")

# Launch the interface
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)