Spaces:
Runtime error
Runtime error
File size: 7,103 Bytes
4469af0 154d980 4469af0 6add08a 4469af0 154d980 4469af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from contextlib import nullcontext
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
import gradio as gr
CHECKPOINTS = [
"epoch-000025",
"epoch-000081"
]
device = "cuda" if torch.cuda.is_available() else "cpu"
context = autocast if device == "cuda" else nullcontext
dtype = torch.float16 if device == "cuda" else torch.float32
def load_pipe(checkpoint):
pipe = StableDiffusionPipeline.from_pretrained("Gazoche/sd-gundam-diffusers", revision=checkpoint, torch_dtype=dtype)
pipe = pipe.to(device)
# Disabling the NSFW filter as it's getting confused by the generated images
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
return pipe
pipes = {
checkpoint: load_pipe(checkpoint)
for checkpoint in CHECKPOINTS
}
def infer(prompt, n_samples, steps, scale, model):
checkpoint = "epoch-000025" if model == "normal" else "epoch-000081"
in_prompt = ""
guidance_scale = 0.0
if prompt is not None:
in_prompt = prompt
guidance_scale = scale
with context("cuda"):
images = pipes[checkpoint](
n_samples * [in_prompt],
guidance_scale=guidance_scale,
num_inference_steps=steps
).images
return images
def infer_random(n_samples, steps, scale, model):
return infer(None, n_samples, steps, scale, model)
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #9d66e5;
background: #9d66e5;
}
input[type='range'] {
accent-color: #9d66e5;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .logo{ filter: invert(1); }
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
"""
block = gr.Blocks(css=css)
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<h1 style="font-weight: 900; font-size: 3rem;">
Gundam text to image
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
From a text description, generate a mecha from the anime franchise Mobile Suit Gundam
</p>
<p style="margin-bottom: 10px; font-size: 94%">
Github: <a href="https://github.com/Askannz/gundam-stable-diffusion">https://github.com/Askannz/gundam-stable-diffusion</a>
</p>
<ul>
<li>More steps generally means less visual noise but fewer details</li>
<li>Text guidance controls how much the prompt influences the generation</li>
<li>The overfitted model gives cleaner but less original results</li>
</ul>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate from prompt").style(
margin=False,
rounded=(False, True, True, False),
)
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
btn_rand = gr.Button("Random").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
with gr.Row(elem_id="advanced-options"):
samples = gr.Slider(label="Images", minimum=1, maximum=2, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=25, step=5)
scale = gr.Slider(
label="Text Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
with gr.Row(elem_id="checkpoint"):
model = gr.Radio(label="Model", choices=["normal", "overfitted"], value="normal")
#model = gr.Radio(label="Model", choices=["normal"], value="normal")
text.submit(infer, inputs=[text, samples, steps, scale, model], outputs=gallery)
btn.click(infer, inputs=[text, samples, steps, scale, model], outputs=gallery)
btn_rand.click(infer_random, inputs=[samples, steps, scale, model], outputs=gallery)
gr.HTML(
"""
<div class="footer">
<p> Gradio Demo by 🤗 Hugging Face and Gazoche
</p>
</div>
"""
)
block.launch()
|