File size: 4,056 Bytes
a8af817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
from sklearn.feature_selection import mutual_info_regression
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.linear_model import Lasso
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, auc
import statsmodels.api as sm
import pandas as pd
import numpy as np
import evaluationer
import streamlit as st
# import root_mean_squared_error
from sklearn.metrics import root_mean_squared_error
def feature_selection(X_train, X_test,y_train,y_test,model_reg,alpha = 0.05):
st.write("dvsdv",y_train)
st.write("dvfssdv",X_train)
model = sm.OLS(y_train, sm.add_constant(X_train))
model_fit = model.fit()
pval_cols = model_fit.pvalues[model_fit.pvalues > 0.05].index.tolist()
coef_cols = model_fit.params[abs(model_fit.params) < 0.001].index.tolist()
pval_and_coef_cols = list(set(coef_cols) | set(pval_cols))
mi_scores = mutual_info_regression(X_train, y_train)
mi = pd.DataFrame()
mi["col_name"] = X_train.columns
mi["mi_score"] = mi_scores
mi_cols = mi[mi.mi_score ==0].col_name.values.tolist()
corr = X_train.corr()
corru= pd.DataFrame(np.triu(corr),columns = corr.columns , index = corr.index)
corr_u_cols = corru[corru[(corru > 0.5 )& (corru <1)].any()].index.tolist()
corrl= pd.DataFrame(np.tril(corr),columns = corr.columns , index = corr.index)
corr_l_cols = corrl[corrl[(corrl > 0.5 )& (corrl <1)].any()].index.tolist()
X_new_vif = sm.add_constant(X_train)
# Calculating VIF
vif = pd.DataFrame()
vif["variables"] = X_new_vif.columns
vif["VIF"] = [variance_inflation_factor(X_new_vif.values, i) for i in range(X_new_vif.shape[1])]
st.write("gdfgdsdsdfad",vif)
if len(vif[vif["variables"] == "const"]) == 1:
vif = vif.drop(index = (vif[vif["variables"] == "const"].index[0]))
st.write("gdfgdsad",vif)
# drop const in vif cols
# vif_cols = X_new_vif.drop(columns = "const")
vif_cols = vif[vif.VIF >10].variables.tolist()
# lasso
if alpha == "best":
lasso_len = []
alpha_i = []
for i in range(1,1000,5):
j = i/10000
model_lasso = Lasso(alpha=j)
model_lasso.fit(X_train, y_train)
col_df = pd.DataFrame({
"col_name": X_train.columns,
"lasso_coef": model_lasso.coef_
})
a = len(col_df[col_df.lasso_coef ==0])
lasso_len.append(a)
alpha_i.append(j)
for i in zip(lasso_len,alpha_i):
print(i)
input_alpha = float(input("enter alpha"))
model_lasso = Lasso(alpha=input_alpha)
model_lasso.fit(X_train, y_train)
col_df = pd.DataFrame({
"col_name": X_train.columns,
"lasso_coef": model_lasso.coef_
})
lasso_cols =col_df[col_df.lasso_coef ==0].col_name.tolist()
else:
model_lasso = Lasso(alpha=alpha)
model_lasso.fit(X_train, y_train)
col_df = pd.DataFrame({
"col_name": X_train.columns,
"lasso_coef": model_lasso.coef_
})
lasso_cols =col_df[col_df.lasso_coef ==0].col_name.tolist()
feature_cols = [pval_cols,coef_cols,pval_and_coef_cols,mi_cols,corr_u_cols,corr_l_cols,vif_cols,lasso_cols]
for col in feature_cols:
try:
st.write(f"{col}",X_train.drop(columns = col))
except:
st.write(f"error IN col")
feature_cols_name = ["pval_cols","coef_cols","pval_and_coef_cols","mi_cols","corr_u_cols","corr_l_cols","vif_cols","lasso_cols"]
st.write("feature_cols", vif_cols)
for i,j in enumerate(feature_cols):
evaluationer.evaluation(f"{feature_cols_name[i]} dropped" ,X_train.drop(columns = j),X_test.drop(columns = j),y_train,y_test,model_reg,method = root_mean_squared_error,eva = "reg")
return evaluationer.reg_evaluation_df |