File size: 2,170 Bytes
c9eaa0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
import numpy as np
import tensorflow.contrib.slim as slim



def resblock(inputs, out_channel=32, name='resblock'):
    
    with tf.variable_scope(name):
        
        x = slim.convolution2d(inputs, out_channel, [3, 3], 
                               activation_fn=None, scope='conv1')
        x = tf.nn.leaky_relu(x)
        x = slim.convolution2d(x, out_channel, [3, 3], 
                               activation_fn=None, scope='conv2')
        
        return x + inputs




def unet_generator(inputs, channel=32, num_blocks=4, name='generator', reuse=False):
    with tf.variable_scope(name, reuse=reuse):
        
        x0 = slim.convolution2d(inputs, channel, [7, 7], activation_fn=None)
        x0 = tf.nn.leaky_relu(x0)
        
        x1 = slim.convolution2d(x0, channel, [3, 3], stride=2, activation_fn=None)
        x1 = tf.nn.leaky_relu(x1)
        x1 = slim.convolution2d(x1, channel*2, [3, 3], activation_fn=None)
        x1 = tf.nn.leaky_relu(x1)
        
        x2 = slim.convolution2d(x1, channel*2, [3, 3], stride=2, activation_fn=None)
        x2 = tf.nn.leaky_relu(x2)
        x2 = slim.convolution2d(x2, channel*4, [3, 3], activation_fn=None)
        x2 = tf.nn.leaky_relu(x2)
        
        for idx in range(num_blocks):
            x2 = resblock(x2, out_channel=channel*4, name='block_{}'.format(idx))
            
        x2 = slim.convolution2d(x2, channel*2, [3, 3], activation_fn=None)
        x2 = tf.nn.leaky_relu(x2)
        
        h1, w1 = tf.shape(x2)[1], tf.shape(x2)[2]
        x3 = tf.image.resize_bilinear(x2, (h1*2, w1*2))
        x3 = slim.convolution2d(x3+x1, channel*2, [3, 3], activation_fn=None)
        x3 = tf.nn.leaky_relu(x3)
        x3 = slim.convolution2d(x3, channel, [3, 3], activation_fn=None)
        x3 = tf.nn.leaky_relu(x3)

        h2, w2 = tf.shape(x3)[1], tf.shape(x3)[2]
        x4 = tf.image.resize_bilinear(x3, (h2*2, w2*2))
        x4 = slim.convolution2d(x4+x0, channel, [3, 3], activation_fn=None)
        x4 = tf.nn.leaky_relu(x4)
        x4 = slim.convolution2d(x4, 3, [7, 7], activation_fn=None)
        
        return x4

if __name__ == '__main__':
    

    pass